Перейти до основного вмісту
Properties of the distribution of a random incomplete sum of a convergent positive series whose members form a generalized Fibonacci sequence
Karvatsky Dmytro Mykolayovych 1
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
Keywords: incomplete sum, convergent positive series, Lebesgue structure, Fibonacci sequence
Abstract
In this paper we study Lebesque structure, topological, metric and fractal properties of the distribution of random incomplete sum of the convergent series, whose terms are elements of a Fibonacci generalized sequence, namely, the sequence whose terms satisfy the following condition $u_{n+2} = pu_{n+1}+pu_n$, where $u_1, u_2, p, s$ are fixed positive real numbers.
References

[1]  Gontcharenko Ya.V., Pratsiovytyi M.V., Torbin G.M. Fractal properties of probability distributions on the set of incomplete sums of positive series, Transactions of the Dragomanov National Pedagogical University of Ukraine. Series 1. Phys.-Math. Sciences Dragomanov National Pedagogical University of Ukraine, Kyiv, (2005), no. 6, 232–250.

[2] Jessen B., Wintner A. Distribution functions and Rieman Zeta-function // Trans. Amer. Math. Soc., 38 (1), 1935, p.48-88.

[3]  Levy P. Sur les series dont les termes sont des variables independantes // Studia math., 1931 (3), p.119-155.

[4]  Lyons R. Seventy years of Rajchmann measures // J. Fourier Anal. Appl., Spesial issue. - 1995. - P. 363-377.

[5]  Nyman I.E., Saenz R.A. On a paper of Guthrie and Nyman on subsums of infinite series // Colloquium matematicum. – 2000. – 10, N1. – vol. 83.

[6]  Pratsiovytyi M.V. Distributions of sums of random power series // Dopov. Nats. Akad. Nauk Ukrain. – 1996, N5. – С. 32-37.

[7] Pratsiovytyi M.V. Fractal Approach to Investigations of Singular Probability Distributions // Dragomanov National Pedagogical University, Kyiv. – 1998.

[8] Karvatskyi D.M., Vasylenko N.M. Mathematical structures in the spaces of generalized Fibonacci sequences // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 13(1). - K.: Drahomanov National Pedagogical University, 2012. - С. 118-128.

[9] Lukach E. Characteristic functions. - M.:Nauka, 1979. - 424 с.

[10] Romanko V.K. Difference equations. -M.:Binom, 2006. - 112 p

Cite
ACS Style
Karvatsky, D.M. Properties of the distribution of a random incomplete sum of a convergent positive series whose members form a generalized Fibonacci sequence. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Karvatsky DM. Properties of the distribution of a random incomplete sum of a convergent positive series whose members form a generalized Fibonacci sequence. Bukovinian Mathematical Journal. 2016; 3(1).
Chicago/Turabian Style
Dmytro Mykolayovych Karvatsky. 2016. "Properties of the distribution of a random incomplete sum of a convergent positive series whose members form a generalized Fibonacci sequence". Bukovinian Mathematical Journal. 3 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings