Перейти до основного вмісту
On the abscissas of convergence of random Dirichlet series
Skaskiv Oleg Bogdanovich 1 , Shapovalovska Lyudmila Oleksandrivna 1
1 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: the abscissas of convergence, a random Dirichlet series, theorem of Tian Fanji, theorem of P.Filevych
Abstract
Distribution of the abscissas of convergence for a random Dirichlet series with pairwise independent and non-identically distributed random coefficients is considered. The obtained results generalizes some theorems of Tian Fanji, P.Filevych and others.
References

[1] Mandelbroit S. Dirichlet series, principles and methods. - M.: Mir, 1973.

[2] Leontiev A.F. Exponent series. - M.: Nauka, 1976.

[3] Sheremeta M.M. The whole series of Dirichlet. - K.: IS-DO, 1993.

[4] Zadorozhna O.Y., Skaskiv O.B. Elementary remarks on the abscissa of convergence of Laplace-Stilts's integrals // Bukovinian Mathematical Journal - 2013 - Vol. 1, No. 3-4 - P. 45-50.

[5]  Kahane J.– P. Some random series of functions. – 2nd. ed. – Cambridge stud. in adv. math. 5. – Cambridge Univ. Press, 1985. – 308 p.

[6]  Tian F. Growth of random Dirichlet series // Acta Math. Sci. – 2000. – V.20, No3. – P.390–396.

[7]  Filevych P.V. On the relations between the abscissa of convergence and the abscissa of absolute convergence of random Dirichlet series // Mat. Stud. – 2003. – V.20, No1. – P.33–39.

[8] Ding X., Xiao Y. Natural boundary of random Dirichlet series // Ukr. matem. zhurn. - 2006. - Vol. 58, No7. - С.997-1005.

[9]  Ryll-Nardzewski C. D.Blackwell’s conjecture on power series with random coefficients // Studia Math. – 1953. – V.13. – P.30–36.

[10]  Erdős P., Rényi A. On Cantor’s series with convergen $\sum 1/q_n$  // Ann. Univ. Sci. Budapest Eőtvős. Sect. Math. – 1959. – V.2. – P.93–109.

[11]  Petrov V.V. Sums of idependent random variables. – New York: Springer, 1975

[12] Martikainen A.I., Petrov V.V. On the Borel-Cantelli lemma // Scientific Sem. Leningrad. department. mat. inst. Steklova. - 1990. -T.184. - P.200-207 (English trans. in: J. Math.Sci., 1994,63, 540-544).

[13]  Billingsley P. Probability and measure. – New York: Wiley, 1986.

[14] Skaskiv O.B. Theory of probabilities - Lviv: Numero, 2012. - 143 p.

[15]  Shapovalovska L.O., Skaskiv O.B. On the radius of convergence of random gap power series // Int. Journal of Math Analysis. – 2015 (submitted for publication).

[16]  Arnold L. Über die Konverge einer zufälligen Potenzreihe // J. Reine Angew. Math. – 1966. – V.222. – P.79–112.

[17]  Arnold L. Konvergenzprobleme bei zufälligen Potenzreihen mit Lücken // Math. Zeitschr. – 1966. – Bd.92. – S.356–365.

[18]  Roters K. Convergence of random power series with pairwise independent Banach-space-valued coefficients // Statistics and Probability Letters. – 1993. – V.18. – P.121–123.

Cite
ACS Style
Skaskiv, O.B.; Shapovalovska, L.O. On the abscissas of convergence of random Dirichlet series. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Skaskiv OB, Shapovalovska LO. On the abscissas of convergence of random Dirichlet series. Bukovinian Mathematical Journal. 2016; 3(1).
Chicago/Turabian Style
Oleg Bogdanovich Skaskiv, Lyudmila Oleksandrivna Shapovalovska. 2016. "On the abscissas of convergence of random Dirichlet series". Bukovinian Mathematical Journal. 3 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings