Перейти до основного вмісту
Discrete model of stochastic optimization of investment portfolio
Gorun Pavlo Pavlovych 1 , Chabaniuk Yaroslav Mykhailovych 2,3
1 Department of Artificial Intelligence Systems, National University “Lviv Polytechnic”, Lviv , 79905, Ukraine
2 Department of Industrial Safety and Labor Protection, Lviv State University of Life Safety , Lviv , 79000, Ukraine
3 Department of Optimal Process Theory, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: discrete model, stochastic optimization, Markov switching, convergence conditions, generator of two-component Markov process
Abstract
A multidimensional discrete procedure of stochastic optimization with Markov switchings in the series scheme is investigated. Sufficient conditions for its convergence has been established. Convergence conditions for multidimensional procedure were analized based on the generator of discrete procedure for a double-component Markov process and its asymptotic representations in the averaging scheme. The stochastic optimization procedure was applied to the problem of finding an optimal investment portfolio.
References

[1]  Kiefer J., Wolfowitz J. Stochastic estimation of the maximum of a regression function //Ann. Math. Satist. - 1952. - Vol.23, No3. - P. 462-466.

[2] Nevelson M.B., Khasminsky R.Z. Stochastic Approximation and Recurrence Estimation. - M.: Nauka, 1972. 304 p.

[3] Tsypkin Ya.Z. Fundamentals of the theory of automatic systems. - M.: Nauka, 1977. - 560 p.

[4] Polyak B.T. Introduction to optimization. - M.:Nauka, 1983.

[5] Ljung L., Söderström T. System Identification: Theory for the User. - M.: Nauka, 1991. - 431 p.

[6] Ermol'ev Y.M. Methods of stochastic programming. - M.: Nauka, 1976.

[7]  Kushner H.J., Yin G.G. Stochastic Approximation Algorithms and Applications. - New York: Springer-Verlag, 1997. - 415 p.

[8] Katkovnik V.Ya.Linear estimation and stochastic optimization problems. - M.: Nauka, 1976. - 487 p.

[9] Uryaz'ev S.P. Adaptive algorithms of stochastic optimization and game theory. - M.: Nauka, 1990. - 182 p.

[10] Korolyuk V.S. Stochastic models of systems. - K.: Lybid, 1993. - 136 p.

[11] Horun P.P., Chabaniuk Y.M., Kukurba V.R. Generator of the jump optimization procedure in the Markov environment // XVI International Conference “Problems of decision making under uncertainties” (PDMU-2010, October 4-8, 2010). - Kyiv: Education of Ukraine. - P. 54.

[12]  Koroliuk V., Limnios N. Stochastic Systems in Merging Phase Space. - World Scientific Publishing, 2005. - 330 p.

[13]  Korolyuk V.S., Korolyuk V.V. Stochastic Models of Systems. - London: Kluwer acad. pub., 1999. - 185 p.

[14] Tolochko Yu.M. Two-level mathematical model of finding the optimal investment portfolio by the sequentially considered groups of equal criteria // Collection of scientific articles under the general editorship of M.M. Kovalev. - Minsk: BSU, 2003. - p. 233-257.

[15] Sharp W. Investments / Sharpe W., Alexander G., Bailey J.; trans. from English. - M.: Infra-M, 2001. - XII, 1028 p.

[16] Kostyuchenko N. Analysis of credit risks. - ITD “Skifia”, 2010. - 440 p.

[17] Barbashin E.A. Lyapunov functions. - M.:Nauka, 1970. - 240 p.

Cite
ACS Style
Gorun, P.P.; Chabaniuk, Y.M. Discrete model of stochastic optimization of investment portfolio. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Gorun PP, Chabaniuk YM. Discrete model of stochastic optimization of investment portfolio. Bukovinian Mathematical Journal. 2016; 3(1).
Chicago/Turabian Style
Pavlo Pavlovych Gorun, Yaroslav Mykhailovych Chabaniuk. 2016. "Discrete model of stochastic optimization of investment portfolio". Bukovinian Mathematical Journal. 3 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings