[1] Witt A.A. To the theory of the violin string // Journal of Technical Physics. 1936, -6, No. 9, - P. 1459-1479.
[2] Sharkovsky A.N., Maistrenko Y.L., Romanenko E.Yu. Difference equations and their applications. - K.: Naukova Dumka, 1986. - 278 p.
[3] Tyshchuk T.V. Generalized periodic solutions of a nonlinear boundary value problem for a first-order partial differential equation of hyperbolic type // Bukovinian Mathematical Journal. - 2014. - 2, No. 1. - P. 113-117.
[4] Samoilenko V.G., Tishchuk T.V. Piecewise constant solutions of the linear partial differential equation of the first order // Vesnik Brestskag Universtitet. Series 4. Physics. Mathematics. - 2015. - No1. - С. 41-46.
[5] Sharkovskiy A.N. Coexistence of cycles of continuous transformation of a straight line into itself // Ukr. mat. zhurn. - 1964. -16, No1. - С. 61-71.
[6] Samoilenko V.G., Tyshchuk T.V., Fedorenko V.V. Coexistence of types of unimodal cycles of continuous mapping of a segment into itself // Bukovinian Mathematical Journal. - 2014. - 2, No. 4. - P. 64-73.
[7] Sharkovskiy A.N., Kolyada S.F., Sivak A.G., Fedorenko V.V.. Dynamics of one-dimensional mappings. - K.: Naukova Dumka, 1989. - 216 p.
- ACS Style
- Tyshchuk, T.V.; Fedorenko, Y.V. Coexistence of generalized periodic solutions of a boundary value problem for a symmetric hyperbolic system of partial differential equations. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Tyshchuk TV, Fedorenko YV. Coexistence of generalized periodic solutions of a boundary value problem for a symmetric hyperbolic system of partial differential equations. Bukovinian Mathematical Journal. 2016; 3(1).
- Chicago/Turabian Style
- Tetyana Volodymyrivna Tyshchuk, Yulia Volodymyrivna Fedorenko. 2016. "Coexistence of generalized periodic solutions of a boundary value problem for a symmetric hyperbolic system of partial differential equations". Bukovinian Mathematical Journal. 3 no. 1.