Перейти до основного вмісту
Cauchy problem for parabolic equations with impulse conditions and degeneracy
Pukalskyi Ivan 1
1 Department of Differential Equations, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Cauchy problem, parabolic equations with impulse conditions, maximum principle, existence and uniqueness of solutions, Hölder spaces
Abstract
We study the Cauchy problem for a second-order linear parabolic equation with impulse conditions in the time variable and power singularities in the coefficients of any order with respect to the space variables. Using the maximum principle and a priori estimates we prove the existence and uniqueness of the solution of this problem in Hölder spaces with power weights.
References

[1] Zeitz F. Modern Theory of Solid State. -M.-L.: Gostekhizdat, 1949. - 720 p.

[2]  G.M. About finiteness of the discrete spectrum of energy operators of quantum systems of many-particle systems // Dokl. of the USSR Academy of Sciences. - 1972. - 207, No 1. - P.25-28.

[3] Smirnov M.M. Growing elliptic and hyperbolic equations. - M.: Nauka, 1966. - 292 p.

[4] Bitsadze A.V. Some classes of equations in partial derivatives. - M.: Nauka, 1981. - 448 p.

[5] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N. Linear and quasilinear equations of parabolic type. - M.: Nauka, 1967. - 736 p.

[6] Matiychuk M.I. Parabolic and elliptic boundary value problems with features - Chernivtsi: Prut, 2003. - 248 p.

[7] Pukal'skii I.D. Boundary value problems for nonuniformly parabolic and elliptic equations with degeneracies and singularities - Chernivtsi: Ruta, 2008. - 253 p.

[8]  Samoilenko A.M., Perestyuk N.A. Impulsive Differential Equations. – Singapore: World Scientific, 1995. – 462 p.

[9]  Perestyuk N.A., Plotnikov N.A., Samoilenko A.M., Skripnik N.V. Differential Equations with Impulse Effects: Multivalued Right-hand Sides with Discontinuities. – Walter de Gruyter Co, Berlin, 2011.

[10]  Asanova A.T. About nonlocal boundary value problem for systems of hyperbolic equations with impulse influences // Ukr. mat. zhurn. 2013. -65, No 3. - С. 315-328.

[11]  Perestyuk N.A., Trach A.B. Periodic solutions for weakly nonlinear partial system with pulse influence // Ukr. Math. J. – 1997. – 49, N 4. – P. 601–605.

[12]  Boinov D.D., Minchev E., Myshkis A. Periodic Boundary value problems for impulsive hyperbolic systems // Commun. Appl. Anal. – 1997. – 1, N 4. – P. 1–14.

[13] Matiychuk M.I. Parabolic and elliptic problems in Dini spaces: monograph. - Chernivtsi, 2010. - 248 p.

[14] Friedman A. Equations with partial derivatives of parabolic type. - M.: Mir, 1968. -427 p.

Cite
ACS Style
Pukalskyi, I. Cauchy problem for parabolic equations with impulse conditions and degeneracy. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Pukalskyi I. Cauchy problem for parabolic equations with impulse conditions and degeneracy. Bukovinian Mathematical Journal. 2016; 3(1).
Chicago/Turabian Style
Ivan Pukalskyi. 2016. "Cauchy problem for parabolic equations with impulse conditions and degeneracy". Bukovinian Mathematical Journal. 3 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings