[1] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevsky L.P. Theory of solitons: method of inverse problem. - M.: Nauka, 1980. - 320 p.
[2] Ablowitz M.J.Nonlinear dispersive waves. Asymptotic analysis and solitons. – Cambridge: Cambridge University Press. – 2011. – 348 p.
[3] Zaslavsky G.M., Sagdeev R.Z. Introduction to Nonlinear Physics. From Pendulum to Turbulence and Chaos. - M.: Nauka, 1988. - 368 p.
[4] Scott E. Waves in active and nonlinear media in application to electronics. - M.: Soviet Radio, 1977. - 368 p.
[5] Korteweg D.J., de Vries G. On the change in form of long waves advancing in a rectangular canal and a new type of long stationary waves // Philos. Mag. – 1895. – 39 . – P. 422-433.
[6] Gardner C.S., Green J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-de Vries equation // Phys. Rev. Lett. – 1967. 19 . – P. 1095- 1097.
[7] Miura R.M., Kruskal M. Application of non-linear WKB-method to the KdV equation // SIAM J. Appl. Math. – 1974. – 26 , N 3. – P. 376-395.
[8] Lax P.D., Levermore C.D. The small dispersion limit of the Korteweg-de Vries equation. I // Comm. Pure Appl. Math. – 1983. - 36 , N 3. – P. 253-290.
[9] Lax P.D., Levermore C.D. The small dispersion limit of the Korteweg-de Vries equation. II // Comm. Pure Appl. Math. – 1983. – 36 , N 5. – P. 571-593.
[10] Lax P.D., Levermore C.D. The small dispersion limit of the Korteweg-de Vries equation. III // Comm. Pure Appl. Math. – 1983. – 36 , N 6. – P. 809-829
[11] Grava T., Klein C. Numerical solution of the small dispersion limit of Korteweg-de Vries and Whitham equations // Comm. Pure Appl. Math. – 2007. – 60 , N 11. – P. 1623-1664.
[12] Venakides S. The Korteweg-de Vries equati- on with small dispersion: higher order Lax-Levermore theory // Comm. Pure Appl. Math. – 1990. – 43 , N 3. – P. 335-361.
[13] Maslov V.P., Omelyanov G.A. Asymptotic soliton-like solutions of equations with small dispersion // Uspekhi mat. nauk. - 1981. -36 (219),N 2. - P. 63-124.
[14] Samoilenko V.G., Samoilenko Y.I. Asymptotic expansions for single-phase soliton-like solutions of the Korteweg-de Frisazi equation with variable coefficients // Ukrainian Mathematical Journal - 2005. -57, N 1. - P. 111-124.
[15] Samoylenko Yu. Asymptotical expansions for one-phase soliton type solution to perturbed Kortewegde Vries equation // Proceedings of the Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”. – K.: Institute of Mathematics. – 2004. – 3. – P. 1435-1441.
[16] Samoilenko V.G., Samoilenko Y.I. Asymptotic two-phase soliton-like solutions of the Korteweg-de Vries equation with variable coefficients and a small parameter of the first degree at the highest derivative // Bulletin of the Kyiv National University. Mathematics. Mechanics. - 2010. - Vol. 23. - P. 19-24.
[17] Samoilenko V.G., Samoilenko Y.I. Asymptotic two-phase soliton-like solutions of the singularly perturbed Korteweg-de Vries equation with variable coefficients // Ukrainian Mathematical Journal - 2008. - 60, N 3. - P. 378-387.
[18] Samoilenko Y.I. Existence of a solution to the Cauchy problem for the Hopf equation with variable coefficients in the space of rapidly decreasing functions // Collection of works of the Institute of Mathematics of the National Academy of Sciences of Ukraine. - 2012. - 9, N 1. - P. 293-300.
[19] Samoilenko Y.I. Existence of a solution to the Cauchy problem for a linear equation with partial differential equations of the first order with variable coefficients in the space of rapidly decreasing functions // Bukovinian Mathematical Journal - 2013. - 1, N 1-2. - P. 118-122.
[20] Faminsky A.V. Cauchy problem for the Korteweg-de Fries equation and its generalizations // Proceedings of the I.G. Petrovskii Seminar. - 1988. -13. - P. 56-105.
- ACS Style
- Samoilenko, V.H.; Samoilenko , Y.I. Asymptotic two-phase soliton-like solutions of the Korteweg-de Vries equation with variable coefficients and a small even-power parameter at the highest derivative. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Samoilenko VH, Samoilenko YI. Asymptotic two-phase soliton-like solutions of the Korteweg-de Vries equation with variable coefficients and a small even-power parameter at the highest derivative. Bukovinian Mathematical Journal. 2016; 3(1).
- Chicago/Turabian Style
- Valeriy Hryhorovich Samoilenko, Yulia Ivanivna Samoilenko . 2016. "Asymptotic two-phase soliton-like solutions of the Korteweg-de Vries equation with variable coefficients and a small even-power parameter at the highest derivative". Bukovinian Mathematical Journal. 3 no. 1.