Перейти до основного вмісту
A nonlocal multipoint time problem for evolutionary equations with a harmonic oscillator
Gorodetskii Vasyl 1 , Shirokovsky Alʹona Oleksandrivna 1
1 Department of Algebra and Informatics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: nonlocal multipoint problem in time, evolutionary equations, harmonic oscillator
Abstract
We establish the well-posedness of a nonlocal multipoint with respect to time problem for an evolution equation with a harmonic oscillator and functions of such an operator in $S$ and $S'$ type spaces.
References

[1] Gorbachuk, V.I.Gorbachuk, M.A.Gorbachuk, Boundary values of solutions of differential-operator equations. - K.: Nauk. dumka, 1984. -283 с.

[2] Goma N.M. Evolutionary equations with a harmonic oscillator in spaces of type $S$ and $S'$ N.M. Goma, V.V. Gorodetsky // Scientific Bulletin of Chernivtsi University: Collection of scientific papers. Mathematics. - Chernivtsi: Ruta, 2005. - P. 13-25.

[3] Nakhushev, A.M. On nonlocal boundary value problems with displacement and their connection with loaded equations / A.M. Nakhushev // Differential Equations. - 1985. -T.21, N1. - С. 92-101.

[4] Nakhushev A.M. Equations of mathematical biology / A.M. Nakhushev. - M.: Vysshaya Shkola, 1995.- 301 p.

[5] Belavin, I.A. Mathematical model of global demographic processes taking into account spatial distribution / I.A. Belavin, S.P. Kapitsa, S.P. Kurdyumov // Journal of Computational Mathematics and Mathematical Physics. - 1988. -T.38, N6. - С. 885-902.

[6] Maikov, A.R. Economic method of calculation of non-stationary non-local in time radiation conditions for wave systems / A.R. Maikov, A.D. Train, S.A. Yakunin // Journal of Computational Mathematics and Mathematical Physics. - 1990. -T.30, N8. - С. 1267-1271.

[7] Dezin, A.A. Operators with the first derivative on “time” and nonlocal boundary conditions / A.A. Dezin // Izv. AN USSR. Ser. matem. -1967. -T.31, N1. - С. 61-86.

[8] Mamyan, A.Kh. General boundary value problems in a layer / A.Kh. Mamyan // Dokl. of the USSR Academy of Sciences. - 1982. -T.267,N2. - С. 291-296.

[9] Gorbachuk, V.I. On the solvability of the Dirichlet problem for the second order differential-operator equation / V.I. Gorbachuk // Direct and inverse problems of the spectral theory of differential operators: collection of scientific papers. - К., 1985. - С. 8-22.

[10] Gorodetsky, V.V.. Multipoint problem for one class of evolution equations / V.V. Gorodetsky, O.V. Martynyuk // Differential Equations. - 2013. -T.49, N8. - С. 1005-1015.

[11] Suetin, P.K. Classical orthogonal polynomials / P.K. Suetin. - M.: Nauka, 1976. -328 с.

[12] Gorodetskiy V.V. Sets of initial values of smooth solutions of differential-operator equations of parabolic type / V.V. Gorodetskiy: Ruta, 1998. 219 p.

[13] Gelfand, I.M. Spaces of basic and generalized frictions / I.M. Gelfand, G.E. Shilov. - M.: Fizmatgiz, 1958. - 307 с.

Cite
ACS Style
Gorodetskii, V.; Shirokovsky , A.O. A nonlocal multipoint time problem for evolutionary equations with a harmonic oscillator. Bukovinian Mathematical Journal. 2016, 3
AMA Style
Gorodetskii V, Shirokovsky AO. A nonlocal multipoint time problem for evolutionary equations with a harmonic oscillator. Bukovinian Mathematical Journal. 2016; 3(1).
Chicago/Turabian Style
Vasyl Gorodetskii, Alʹona Oleksandrivna Shirokovsky . 2016. "A nonlocal multipoint time problem for evolutionary equations with a harmonic oscillator". Bukovinian Mathematical Journal. 3 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings