[1] Baire R. Sur les séries à termes continus et tous de même signe // Bull. Soc. Math. France. – 1904. – 32 . – С. 125-128.
[2] Fort M.K., Jr. Category theorems // Fund. Math. – 1955. – 42 . – С. 276-288.
[3] Calbrix J., Troallik J.P. Applications separement continues // C.R. Acad. Sc. Paris. Sec. A. – 1979. – 288 . – С. 647-648.
[4] Maslyuchenko V.K., Nesterenko V.V. A new generalization of Calbrix–Troallic’s theorem // Topology Appl. – 2014. – 164 . – С. 162-169.
[5] Kuratovsky K. Topology. -T.1.- M.: Mir,1966. - 596 p.
[6] Maslyuchenko V.K., Mykhailyuk O.V., Sobchuk O.V. Investigations on non-negatively continuous mappings // Proceedings of the International Mathematical Conference in memory of Hans Hahn - Chernivtsi: Ruta, 1995, pp. 192-246.
- ACS Style
- Maslyuchenko, V.K.; Maslyuchenko, O.V.; Fotiy, O.G. A new approach to proving Baire’s theorem on semi-continuous functions and one characterization of Beerness. Bukovinian Mathematical Journal. 2016, 3
- AMA Style
- Maslyuchenko VK, Maslyuchenko OV, Fotiy OG. A new approach to proving Baire’s theorem on semi-continuous functions and one characterization of Beerness. Bukovinian Mathematical Journal. 2016; 3(1).
- Chicago/Turabian Style
- Volodymyr Kyrylovych Maslyuchenko, Oleksandr Volodymyrovych Maslyuchenko, Olena Georgiivna Fotiy. 2016. "A new approach to proving Baire’s theorem on semi-continuous functions and one characterization of Beerness". Bukovinian Mathematical Journal. 3 no. 1.