Перейти до основного вмісту
Wiman's inequality for analytic functions in a bicircle
Kuryliak Andriy Olegovich 1 , Skaskiv Oleg Bogdanovich 2 , Shapovalovska Lyudmila Oleksandrivna 2
1 Department of mathematical economics, econometrics, financial and insurance mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
2 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: Wiman's inequality, analytic functions
Abstract
In this paper we prove some analogue of Wiman’s type inequality for analytic functions in the bidisc $\mathbb{D}^2 = \{z ∈ \mathbb{C}^2: |z_1| < 1, |z_2| < 1\}.$ The obtained inequality is sharp.
References

[1] Valiron G. Sur les fonctions entieres d’ordre fini et d’ordre null et en particulier les fonctions a correspondance reguliere // Ann Fac. Sci. Univ. Toulouse. – 1914. – 5 . – P.117–257.

[2] Wiman A. Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Function und dem grössten Gliebe der zugehörigen Taylorischen Reiche // Acta Math. – 1914. –  37 . – P.305–326.

[3] Valiron G. Fonctions analytiques. – Paris: Press. Univer. de France, 1954.

[4] Wittich H. Neuere Untersuchungen über eindeutige analytische Funktionen. – Berlin- Göttingen-Heidelberg: Springer-Verlag, 1955.

[5] Kővari T. On the maximum modulus and maximal term of functions analytic in the unit disc // J. London Math. Soc. – 1966. – 41 . – P.129–137.

[6] Suleymanov N.V. Estimation of the Wiman-Valiron type for power series with finite radius of convergence and their accuracy // DAN SS-SR. - 1980. -253, № 4. - P. 822-824.

[7] Kurilyak A.O., Skaskiv O.B. Wiener type inequality for analytical in circle functions and Bera category // Scientific Bulletin of Yuriy Fedkovych Chernivtsi National University. Series: Mathematics. - 1, № 4. - Chernivtsi: Chernivtsi National University, 2011. - P.73-79.

[8] Kuryliak A.O., Skaskiv O.B., Chyzhykov I.E. Baire categories and Wiman’s inequality for analytic functions // Bull. Soc. Sc. et des letters de Lodz. – 2012. – 62 , №3. – P.17–33.

[9] Ovchar I.E., Skaskiv O.B. One analog of Wiener inequality for Laplace integrals depending on a small parameter // Carpathian Mathematical Publications - 2013 - 5, № 2 - P. 305-309.

[10] Kuryliak A.O., Shapovalovska L.O., Skaskiv O.B. Wiman’s type inequality for some double power series // Mat. Stud. – 2013. – 39 , №2. – P.134– 141.

[11] Gopala Krishna J., Nagaraja Rao I.H. Generalized inverse and probability techniques and some fundamental growth theorems in $\mathbb{C}^ k$ // J. Indian Math. Soc. – 1977. – 41 . – P.203–219.

Cite
ACS Style
Kuryliak, A.O.; Skaskiv, O.B.; Shapovalovska, L.O. Wiman's inequality for analytic functions in a bicircle. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Kuryliak AO, Skaskiv OB, Shapovalovska LO. Wiman's inequality for analytic functions in a bicircle. Bukovinian Mathematical Journal. 2016; 2(2-3).
Chicago/Turabian Style
Andriy Olegovich Kuryliak, Oleg Bogdanovich Skaskiv, Lyudmila Oleksandrivna Shapovalovska. 2016. "Wiman's inequality for analytic functions in a bicircle". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings