[1] Ferens C. On the range of purely atomic probobility measures // Studia Math. – 1984. – 77 . – С. 261-263.
[2] Guthrie J.A., Nymann J.E. The topological structure of the set of subsums of an infinite series // Studia Math. – 1988. – 55 , №2. – С. 323-327.
[3] Hornich H. Über beliebige Teilsummen absolut konvergenter Reihen // Monatsh. Math. Phys. – 1941. – 49 . – С. 316-320.
[4] Kakeya S. On the partial sums of an infinite series // Tôhoku Sci Rep. – 1915. – 3 , №4. – С. 159-164.
[5] Nymann J.E., Sáenz R.A. On the paper of Guthreie and Nymann on subsums of infinite series // Colloq. Math. – 2000. – 83 . – С. 1-4.
[6] Pratsiovytyi M.V., Feshchenko O.Y. Topological, metric and fractal properties of probability distributions on the set of incomplete sums of positive series // Theory of Stochastic Processes. – 2007. – 13(29) , №1-2. – С. 205-224.
[7] Weinstein A.D., Shapiro B.E. On the structure of a set of $\overline{α}$ -representable numbers // Izv. Vysš. Učebn. Zaved. Matematika. – 1980. – 24 . – С. 8-11.
[8] Baranovskyi O.M., Pratsovytyi M.V., Torbin H.M. Ostrogradsky-Serpinsky-Pierce series and their application - K.: Naukova Dumka, 2013. - 288 p.
[9] Goncharenko Y.V., Pratsovytyi M.V., Torbin H.M. Topological and fractal properties of the set of incomplete sums of a familiar series and distributions on it // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2005. - № 6. - P. 210-224.
[10] Goncharenko Y.V., Pratsovytyi M.V., Torbin G.M. Fractal properties of some Bernoulli convolutions // Theory of probability and mathematical statistics - 2008. - 79. - P. 34-49.
[11] Korsun N.O., Pratsovytyi M.V. On the set of incomplete sums of familiar series with one condition of homogeneity and generalization of the binary image of numbers // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2009. - № 10. - p. 28-39.
[12] Pratsovytyi M.V. Fractal approach in the study of singular distributions / M.V. Pratsovytyi. - K.: Drahomanov National Pedagogical University, 2004. - 296 p.
[13] Pratsovytyi M.V., Torbin G.M. One class of random variables of the Jessen-Wintner type // Proceedings of the National Academy of Sciences of Ukraine. NAS of Ukraine. - 1998. - № 4. - P. 48-54.
[14] Turbin A.F., Pratsevitiy N.V. Fractal sets, functions, distributions. - K.: Naukova Dumka, 1992. - 208 p.
- ACS Style
- Pratsiovytyi, M.; Savchenko, I.O. The set of incomplete sums of a numerical series with one nonlinear homogeneity property. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Pratsiovytyi M, Savchenko IO. The set of incomplete sums of a numerical series with one nonlinear homogeneity property. Bukovinian Mathematical Journal. 2016; 2(2-3).
- Chicago/Turabian Style
- Mykola Pratsiovytyi, Igor Oleksandrovych Savchenko. 2016. "The set of incomplete sums of a numerical series with one nonlinear homogeneity property". Bukovinian Mathematical Journal. 2 no. 2-3.