The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables
1 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
2 Department of Applied Mathematics, Lviv polytechnic national university, Lviv, 79007, Ukraine
Keywords:
fundamental solution, the degenerate Kolmogorov equation
Abstract
The classical fundamental solution of the Cauchy problem for a degenerate Kolmogorov’s equation with coefficients depend on a part of spatial variables is constructed and investigated.
References
[1] Kolmogorov А.N. Zuffällige Bevegungen ( Zur Theorie der Brovnishen Bevegung ) / А.N. Kolmogorov // Ann.Math. – 1934. – 35 . – P. 116–117.
[2] Eidelman S.D. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type /S.D. Eidelman , S.D. Ivasyshen, A.N. Kochubei //Operator Theory: Adv. and Appl. – 2004. – 152 . – 390 p.
[3] Eidelman S.D. Parabolic systems / S.D. Eidelman. - M.: Nauka, 1964. - 143 p.
Cite
- ACS Style
- Ivasyshen, S.D.; Medynsky, I. The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Ivasyshen SD, Medynsky I. The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables. Bukovinian Mathematical Journal. 2016; 2(2-3).
- Chicago/Turabian Style
- Stepan Dmytrovych Ivasyshen, Igor Medynsky. 2016. "The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables". Bukovinian Mathematical Journal. 2 no. 2-3.
Export