Перейти до основного вмісту
The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables
Ivasyshen Stepan Dmytrovych 1 , Medynsky Igor 2
1 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
2 Department of Applied Mathematics, Lviv polytechnic national university, Lviv, 79007, Ukraine
Keywords: fundamental solution, the degenerate Kolmogorov equation
Abstract

The classical fundamental solution of the Cauchy problem for a degenerate Kolmogorov’s equation with coefficients depend on a part of spatial variables is constructed and investigated.

References

[1] Kolmogorov А.N. Zuffällige Bevegungen ( Zur Theorie der Brovnishen Bevegung ) / А.N. Kolmogorov // Ann.Math. – 1934. – 35 . – P. 116–117.

[2] Eidelman S.D. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type /S.D. Eidelman , S.D. Ivasyshen, A.N. Kochubei //Operator Theory: Adv. and Appl. – 2004. – 152 . – 390 p.

[3] Eidelman S.D. Parabolic systems / S.D. Eidelman. - M.: Nauka, 1964. - 143 p.

Cite
ACS Style
Ivasyshen, S.D.; Medynsky, I. The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Ivasyshen SD, Medynsky I. The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables. Bukovinian Mathematical Journal. 2016; 2(2-3).
Chicago/Turabian Style
Stepan Dmytrovych Ivasyshen, Igor Medynsky. 2016. "The classical fundamental solution of the degenerate Kolmogorov equation, whose coefficients do not depend on the degeneracy variables". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings