[1] J. Činčura, T. Šalát and T. Visnyai, On separately continuous functions $f: \mathcal{l}^2 → \mathbb{R},$ Acta Acad. Paedagog. Agriensis, XXXI (2004), 11–18.
[2] O. Dzagnidze, Separately continuous function in a new sense are continuous , Real Anal. Exchange 2 (1998-99), 695–702.
[3] W. Sierpiński, Sur une propertie de fonctions de deux variables réeles, continuous par rapport à chacune de variables , Publ. Mat. Univ. Belgrade, vol.1 (1932), 125–128.
[4] T. Visnyai, Strongly separately continuous and separately quasicontinuous functions $f: \mathcal{l}^2 → \mathbb{R},$ Real Anal. Exchange 38:2 (2013), 499–510.
[5] O. Karlova, On Baire classification of strongly separately continuous functions , Real Analysis Exchange.
[6] O. Karlova, V. Mykhaylyuk, On strongly separately continuous mappings on products , Math. Slovaca.
[7] O. Karlova, Strongly non-narrowly continuous functions and one characterization of open sets in the box product, Mat.
- ACS Style
- Karlova, O. Some properties of strongly differentiable continuous functions on products. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Karlova O. Some properties of strongly differentiable continuous functions on products. Bukovinian Mathematical Journal. 2016; 2(2-3).
- Chicago/Turabian Style
- Olena Karlova. 2016. "Some properties of strongly differentiable continuous functions on products". Bukovinian Mathematical Journal. 2 no. 2-3.