Перейти до основного вмісту
Properties of solutions to the Weber equation
Trukhan Yuriy Stepanovych 1 , Sheremeta Myroslav 1
1 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79007, Ukraine
Keywords: the Weber equation
Abstract

Growth, convexity, close-to-convexity and the $l$-index boundedness of the solutions of Weber equation $w'' - ({{z^2}\over {4}} - v - {{1}\over {2}})w = 0$ if $v ≠ {1\over2}$ are investigated.

References

[1] Sheremeta M.M. Analytic functions of bounded index. - Lviv: VNTL Publishers. – 1999. – 141 p.

[2] Goluzin G.M. Geometrical theory of functions of a complex variable.  - M.: Nauka. -1966. - 626 p.

[3] Sheremeta Z.M., Sheremeta M.M. Limitations of the $l$-index of analytical functions represented by power series // Lviv University Bulletin, Series of Mech. and Math. 2006 - 66 - P. 208-213.

[4] Goodman A.W. Univalent functions and nonanalytic curves // Proc. Amer. Math. Soc. – 1957. – 8 . – P.597-601.

[5] Goodman A.W. Univalent Functions, II . – Marner Publishing Co. – 1983. – 158p.

Cite
ACS Style
Trukhan, Y.S.; Sheremeta, M. Properties of solutions to the Weber equation. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Trukhan YS, Sheremeta M. Properties of solutions to the Weber equation. Bukovinian Mathematical Journal. 2016; 2(2-3).
Chicago/Turabian Style
Yuriy Stepanovych Trukhan, Myroslav Sheremeta. 2016. "Properties of solutions to the Weber equation". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings