We study the $Δ^♯$–representation of numbers belonging to $(0;1]: \sum_k (-1)^{k-1} 2^{1-a_1-a_2-...-a_k} ≡ Δ_{a_1a_2...a_n...}^♯.$ This is an encoding of numbers by means of infinite alphabet $A = \{1,2,...\}.$ Its applications in the theory of fractal dimension, fractal geometry, metric and probabilistic theory of numbers are proposed.
[1] Pratsovytyi M. V., Isaieva T. M. Coding of real numbers with an infinite alphabet and base 2 // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2013. - № 15. - P. 6-23.
[2] Minkowski H. Gesammeine Abhandlungen. - Berlin, 1911. - Vol. 2. - P. 50-51.
[3] Paradis J., Viader P., Bibiloni L. The derivative of Minkowski’s ?$(x)$ function // J. Math. Anal. Appl. - 2001. - Vol. 253. - P. 107-125.
[4] Alkauskas G. Semi–regular continued fractions and an exact formula for the moments of the Minkowski question mark function // Ramanujan J. - 2011. - Vol. 25 , no. 3. - P. 359-367.
[5] Dushistova A. A., Kan I. D., Moshchevitin N. G. Differentiability of the Minkowski Question mark function // J. Math. Anal. Appl. - 2013. - Vol. 401 , no. 2. - P. 774-794.
[6] Pratsovytyi M. V., Kalashnikov A. V., Bezborodov V. K. About one class of singular functions containing the classical Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2010. - № 11. - P. 207-213.
[7] Kalashnikov A. V., Pratsovytyi M. V. Singularity of functions of a one-parameter class containing the Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2011. - № 12. - P. 59-65.
[8] Pratsovytyi M.V. Geometry of real numbers in their encodings by means of an infinite alphabet as a basis of topological, metric, fractal and probabilistic theories // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2013. - № 14. - P. 189-216.
[9] Pratsovytyi M. V. Fractal approach in the study of singular distributions. - Kyiv: Drahomanov National Pedagogical University, 1998. - 296 p.
[10] Billingsley P. Ergodic theory and information. - М. : Mir, 1969. - 238 p.
[11] Baranovskyi O. M., Pratsovytyi M. V., Torbin H. M. Ostrohradskyi-Serpinskyi-Pierce series and their applications. Kyiv: Naukova Dumka, 2013. - 268 p.
[12] Pratsovytyi M. V., Zadnipryanyi M. V. Geometry and foundations of the metric theory of representation of real numbers by Sylvester series // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2011. - № 12. - P. 65-73.
- ACS Style
- Pratsiovytyi, M.; Isayeva , T.M. On some applications of the $Δ^♯$ -representation of real numbers. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Pratsiovytyi M, Isayeva TM. On some applications of the $Δ^♯$ -representation of real numbers. Bukovinian Mathematical Journal. 2016; 2(2-3).
- Chicago/Turabian Style
- Mykola Pratsiovytyi, T. M. Isayeva . 2016. "On some applications of the $Δ^♯$ -representation of real numbers". Bukovinian Mathematical Journal. 2 no. 2-3.