Перейти до основного вмісту
On some applications of the $Δ^♯$ -representation of real numbers
Pratsiovytyi Mykola 1,2 , Isayeva T. M. 3
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
3 National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
Keywords: the $Δ^♯$ -representation of real numbers
Abstract

We study the $Δ^♯$–representation of numbers belonging to $(0;1]: \sum_k (-1)^{k-1} 2^{1-a_1-a_2-...-a_k} ≡ Δ_{a_1a_2...a_n...}^♯.$ This is an encoding of numbers by means of infinite alphabet $A = \{1,2,...\}.$  Its applications in the theory of fractal dimension, fractal geometry, metric and probabilistic theory of numbers are proposed.

References

[1] Pratsovytyi M. V., Isaieva T. M. Coding of real numbers with an infinite alphabet and base 2 // Scientific Journal of the Drahomanov National Pedagogical University. Series 1. Physical and mathematical sciences. - 2013. - № 15. - P. 6-23.

[2] Minkowski H. Gesammeine Abhandlungen. - Berlin, 1911. - Vol. 2. - P. 50-51.

[3] Paradis J., Viader P., Bibiloni L. The derivative of Minkowski’s ?$(x)$ function // J. Math. Anal. Appl. - 2001. - Vol. 253. - P. 107-125.

[4] Alkauskas G. Semi–regular continued fractions and an exact formula for the moments of the Minkowski question mark function // Ramanujan J. - 2011. - Vol. 25 , no. 3. - P. 359-367.

[5] Dushistova A. A., Kan I. D., Moshchevitin N. G. Differentiability of the Minkowski Question mark function // J. Math. Anal. Appl. - 2013. - Vol. 401 , no. 2. - P. 774-794.

[6] Pratsovytyi M. V., Kalashnikov A. V., Bezborodov V. K. About one class of singular functions containing the classical Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2010. - № 11. - P. 207-213.

[7] Kalashnikov A. V., Pratsovytyi M. V. Singularity of functions of a one-parameter class containing the Minkowski function // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2011. - № 12. - P. 59-65.

[8] Pratsovytyi M.V. Geometry of real numbers in their encodings by means of an infinite alphabet as a basis of topological, metric, fractal and probabilistic theories // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2013. - № 14. - P. 189-216.

[9] Pratsovytyi M. V. Fractal approach in the study of singular distributions. - Kyiv: Drahomanov National Pedagogical University, 1998. - 296 p.

[10] Billingsley P. Ergodic theory and information. - М. : Mir, 1969. - 238 p.

[11] Baranovskyi O. M., Pratsovytyi M. V., Torbin H. M. Ostrohradskyi-Serpinskyi-Pierce series and their applications.  Kyiv: Naukova Dumka, 2013. - 268 p.

[12] Pratsovytyi M. V., Zadnipryanyi M. V. Geometry and foundations of the metric theory of representation of real numbers by Sylvester series // Scientific Journal of the Drahomanov National Pedagogical University. Series 1: Physical and mathematical sciences. - 2011. - № 12. - P. 65-73.

Cite
ACS Style
Pratsiovytyi, M.; Isayeva , T.M. On some applications of the $Δ^♯$ -representation of real numbers. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Pratsiovytyi M, Isayeva TM. On some applications of the $Δ^♯$ -representation of real numbers. Bukovinian Mathematical Journal. 2016; 2(2-3).
Chicago/Turabian Style
Mykola Pratsiovytyi, T. M. Isayeva . 2016. "On some applications of the $Δ^♯$ -representation of real numbers". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings