Перейти до основного вмісту
Global solvability of mixed problem for hyperbolic system of the first order stochastic equations
Derevyanko Taras 1
1 Department of mathematical economics, econometrics, financial and insurance mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: Banach fixed point theorem, stochastic hyperbolic semilinear system of first-order equations
Abstract
We prove the existence and uniqueness theorem for stochastic partial differential equations of first order. The proof is based on the characteristics method, Banach fixed point theorem and a space metric with weighted functions.
References

[1] Lax P. Partial differential equations. / P. Lax. Courant Institute of Mathematical Sciences. – 2006. – N 4. – 285 p.

[2] Arnold V. I. Close-to-convex schlicht functions. / V. I. Arnold // Michigan Math. J. – 1952. – V.1. – N 2. – P. 169–185.

[3] Hillen T., Hadeler K. P. Hyperbolic systems and transport equations in mathematical biology. / T. Hillen , K. P. Hadeler // Analysic and numeries for conservation laws. Berlin: Springer. – 2005. – P. 257–279.

[4] Turo J. Study of first order stochastic partial differential equations using integral contractors. / J. Turo // Applicable Analisys. – 1999. – Vol. 70(3-4). – P. 281–291.

[5] Turo J. Existens and uniques of solutions to a class of stochastic functional partial differentional equations via integral contractors. / J. Turo // Journal for Analisys and its Applications.– 1999. – Vol. 18. – No. 1. – P. 131–141.

[6] Maulenov O., Myshkys A. D. The solvability of mixed problems for a degenerate semi-linear hyperbolic system on the interval. / O. Maulenov, A. D. Myshkys // Proceedings of the Academy of Sciences of the Kazakh SSR. Mathematical and Physics Series – 1981. – N5. – P. 25-29. (in Russian)

[7] Rozhdestvenskii B. L., Yanenko N. N. Systems of quasilinear equations and their applications to gas dynamics. / B. L. Rozhdestvenskii , N. N. Yanenko. M.: Nauka, 1978. – 592 p. (in Russian)

[8] Gikhman I. I., Miestechkina T. M. Cauchy problem for first order stochastic partial differential equation. / I. I. Gikhman , T. M. Miestechkina // Teor. Sluchainych Protsessov, 1983. – P. 25–28 (in Russian).

[9] Ogawa S. A partial differential equation with white noise as a coefficient. / S. Ogawa // Z. Wahr. verw. –1973 – N 28. – P. 53–71

Cite
ACS Style
Derevyanko, T. Global solvability of mixed problem for hyperbolic system of the first order stochastic equations. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Derevyanko T. Global solvability of mixed problem for hyperbolic system of the first order stochastic equations. Bukovinian Mathematical Journal. 2016; 2(2-3).
Chicago/Turabian Style
Taras Derevyanko. 2016. "Global solvability of mixed problem for hyperbolic system of the first order stochastic equations". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings