We describe all pairs of linear operators that act from $\mathcal{H} (G_1)$ to $\mathcal{H} (G_2)$ and satisfy Rubel’s operator equation.
[1] G. Köthe. Dualität in der Funktionentheorie // J. reine und angew. Math.–1953. – 191 . – P.30–49.
[2] L. A. Rubel. Derivation pairs on the holomorphic functions // Funkcial. Ekvac. – 1967. – №10. – P. 225-227.
[3] N. R. Nandakumar. A Note on Derivation Pairs // Proc. Amer. Math. Soc. – 1969. – №21. – P. 535–539.
[4] L. Zalcman. Derivation pairs on algebras of analytic functions // J. Func. Anal. – 1970. – 5 . – №3. – P. 329–333.
[5] Linchuk Y.S. Generalized Rubel's equation // Scientific Bulletin of Chernivtsi Univ. Mathematics. - 2011. - 1. - № 4. - P. 88-90.
[6] N. R. Nandakumar. A note on the functional equation $M(fg) = M(f)M(g) + L(f)L(g)$ on $H(G)$ // Rend. Sem. Fac. Sci. Cagl. – 1998. – 68 . – P. 13–17.
[7] Pl. Kannappan, N. R. Nandakumar. On a cosine functional equation for operators on the algebra of analytic functions in a domain // Aequationes Mathematicae – 2001.– 61. – №3. – P. 233-238.
[8] Pl. Kannappan. Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, Springer, New York, 2009. – 810 р.
[9] J. Becker A note on derivations of algebras of analytic functions // J. Reine Angew. Math. – 1978. – 297 . – P. 211-213.
[10] N.R. Nandakumar. An application of Nienhuys-Thiemann s theorem to ring derivations on H(G) // Proc. Kon. Ned. Akad. van Wetensch – 1988. – 91 . – P. 199-203.
[11] Y. Watatani. Derivations on continuous functions // Proc. Amer. Math. Soc. – 1980. – 79 . – №2. – P. 206.
[12] R. B. Burckel, S. Saeki. Additive mappings on rings of holomorphic functions // Proc. Amer. Math. Soc. – 1983. – 89. – №1. – P. 79-85.
[13] N.R. Nandakumar. Ring homomorphisms on H(G) // Int. J. Math. Math. Sci. – 1990. – 13 . – №2. – P. 393-396.
[14] N.R. Nandakumar. Ring homomorphisms on algebras of analytic functions // Ann. Univ. Mariae Curie-Sklodowska. – 1990. – 44 . – P. 37-43.
[15] A. K. Gaur, N. R. Nandakumar. Derivation pairs of operators on algebras of analytic functions // Functional analysis, Narosa. – 1998. – P 104–110.
[16] Linchuk Y.S. Derivative pairs of operators in the space of integer functions // Book of Mathematics - 2013 - 1. - № 3-4. - P. 84-88.
[17] Yu.S. Linchuk. On Rubel’s Problem in the class of linear operators on the space of analytic functions // Complex Anal. Oper. Theory, (2014, to appear).
[18] Linchuk Y.S. Operational generalization of one Rubel result // Ukrainian Mathematical Journal.- 2011.- 63.- № 12.- P 1710-1716.
[19] Yu.S. Linchuk. On an operator analog of the cosine addition theorem // J. Math. Sci. – 2014. – 200 . – № 3. – С. 345-351.
[20] John B. Garnett. Bounded analytic functions. – Academic Press, New York, 1981. – 468 p.
- ACS Style
- Linchuk , Y.S. Derivative pairs of operators from $\mathcal{H} (G_1)$ to $\mathcal{H} (G_2)$. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Linchuk YS. Derivative pairs of operators from $\mathcal{H} (G_1)$ to $\mathcal{H} (G_2)$. Bukovinian Mathematical Journal. 2016; 2(2-3).
- Chicago/Turabian Style
- Yurii Stepanovych Linchuk . 2016. "Derivative pairs of operators from $\mathcal{H} (G_1)$ to $\mathcal{H} (G_2)$". Bukovinian Mathematical Journal. 2 no. 2-3.