The paper considers the well-known result: if __ is a symmetric Banach space on__ , different from __ up to the equivalent norm, ___ is a compact operator on __ and __ is a rich subspace of __ , then the subspace ___ is also rich. A proof is proposed that does not use the weak convergence of the Rademacher system to zero, which makes it possible to generalize the result to an arbitrary __ -Köté space with an absolutely continuous norm on a space with finite atom-free measure___.
1. Kantorovich L.V., Akilov G.P. Functional analysis. – M.: Nauka, 1984. – 752 p.
2. Lindenstrauss J., Tzafriri L. Classical Banach spaces. I / Berlin–Heidelberg–New York: Springer– Verlag, 1977. – XIII, 188 p.
3. Plichko A. M., Popov M. M. Symmetric function spaces on atomless probability spaces// Diss. Math.(Rozpr. mat.) – 1990. – 306. – P. 1–85.
4. Popov M., Randrianantoanina B. Narrow Operators on Function Spaces and Vector Lattices. - Berlin–Boston: De Gruyter Studies in Mathematics 45, De Gruyter, 2013. - XIII, 319 p.
- ACS Style
- Krasikova, I.V. Stability of rich subspaces. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Krasikova IV. Stability of rich subspaces. Bukovinian Mathematical Journal. 2016; 2(1).
- Chicago/Turabian Style
- Iryna Volodymyrivna Krasikova. 2016. "Stability of rich subspaces". Bukovinian Mathematical Journal. 2 no. 1.