Перейти до основного вмісту
Stability of rich subspaces
Krasikova Iryna Volodymyrivna 1
1 Department of Fundamental and Applied Mathematics, Zaporizhzhya National University, Zaporizhzhia region, Zaporizhzhya, 69061, Ukraine
Keywords: subspaces
Abstract

The paper considers the well-known result: if __ is a symmetric Banach space on__ , different from __ up to the equivalent norm, ___ is a compact operator on __ and __ is a rich subspace of __ , then the subspace ___ is also rich. A proof is proposed that does not use the weak convergence of the Rademacher system to zero, which makes it possible to generalize the result to an arbitrary __ -Köté space with an absolutely continuous norm on a space with finite atom-free measure___.

References

1. Kantorovich L.V., Akilov G.P. Functional analysis. – M.: Nauka, 1984. – 752 p.
2. Lindenstrauss J., Tzafriri L. Classical Banach spaces. I / Berlin–Heidelberg–New York: Springer– Verlag, 1977. – XIII, 188 p.
3. Plichko A. M., Popov M. M. Symmetric function spaces on atomless probability spaces// Diss. Math.(Rozpr. mat.) – 1990. – 306. – P. 1–85.
4. Popov M., Randrianantoanina B. Narrow Operators on Function Spaces and Vector Lattices. - Berlin–Boston: De Gruyter Studies in Mathematics 45, De Gruyter, 2013. - XIII, 319 p.

Cite
ACS Style
Krasikova, I.V. Stability of rich subspaces. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Krasikova IV. Stability of rich subspaces. Bukovinian Mathematical Journal. 2016; 2(1).
Chicago/Turabian Style
Iryna Volodymyrivna Krasikova. 2016. "Stability of rich subspaces". Bukovinian Mathematical Journal. 2 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings