Перейти до основного вмісту
Nonlocal multipoint time problem for evolutionary equations with pseudodifferential operators in spaces of periodic functions
Gorodetskii Vasyl 1 , Drin Yaroslav Mykhailovych 2
1 Department of Algebra and Informatics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Department of Mathematical Problems of Management and Cybernetics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: evolutionary equations
Abstract

The correct solvability of a nonlocal multipoint time problem for evolutionary pseudodifferential equations with a boundary condition in the space of periodic generalized functions of the ultradistribution type is established.

References

1. Nakhushev A.M. On nonlocal boundary value problems with displacement and their connections with loaded equations // Differents. equations. – 1985. – Vol. 21, No. 1. – P. 92–101.
2. Nakhushev A.M. Equations of mathematical biology. – M.: Vysshaya, shkola, 1995. – 301 p.
3. Belavin I.A., Kapitsa S.P., Kurdyumov S.P. Mathematical model of global demographic processes taking into account spatial distribution // Journal. will calculate we have and mat. physicists - 1988. - T. 38, No. 6. - p.885–902.
4. Maikov A.R., Poezd A.D., Yakunin S.A. Economic method of calculating non-stationary, non-local in time radiation conditions for wave systems // Journal. will calculatewe have and mat. physicists - 1990. - T. 30, No. 8. - P. 1267-1271.
5. Dezin A.A. First-derivative operators by "time" and nonlocal boundary conditions // Izv. Academy of Sciences of the USSR. Ser. mate. - 1967. - T.31, No. 1. - p. 61–86.
6. A.H. Mamyan General boundary value problems in a layer / DAN USSR. -182. - T. 267, No. 2. - p. 292–296.

7. Gorbachuk V.I., Gorbachuk M.L. Trigonometric series and generalized periodic functions // Dan USSR. - 1981. - T. 257, No. 4. - p.799–803.
8. Gorbachuk V.I. On ultradistributed periodic Fourier series // Ukr. mate. journal - 1982. - Vol. 34, No. 2. - p. 144–150.
9. Babenko K.I. On one new problem of quasi-analyticity and the Fourier transform of whole functions / Trudy Moskovskoho Mat. obva - 1956. - T. 5. - S. 523–542.
10. Horodetsky V.V. The Cauchy problem for evolution equations of infinite order. – Chernivtsi: Ruta, 2005. – 291 p.
11. Gelfand I.M., Shilov G.E. Some questions of the theory of differential equations. - M.: Fizmatgiz, 1958. - 274 p.
12. Horodetsky V.V. Sets of initial values ​​of smooth solutions of differential operator equations of the parabolic type. - Chernivtsi: Ruta, 1998. - 219 p.
13. Stein I., Weiss. G. Introduction to harmonic analysis on Euclidean spaces. - M.: Mir, 1974. - 334 p.

Cite
ACS Style
Gorodetskii, V.; Drin , Y.M. Nonlocal multipoint time problem for evolutionary equations with pseudodifferential operators in spaces of periodic functions. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Gorodetskii V, Drin YM. Nonlocal multipoint time problem for evolutionary equations with pseudodifferential operators in spaces of periodic functions. Bukovinian Mathematical Journal. 2016; 2(1).
Chicago/Turabian Style
Vasyl Gorodetskii, Yaroslav Mykhailovych Drin . 2016. "Nonlocal multipoint time problem for evolutionary equations with pseudodifferential operators in spaces of periodic functions". Bukovinian Mathematical Journal. 2 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings