Перейти до основного вмісту
Green's vector functions of boundary value problems for the Fokker-Planck-Kolmogorov model equation of a normal Markov process
Turchyna Natalia Ivanivna 1 , Ivasyshen Stepan Dmytrovych 2
1 National Technical University of Ukraine "Kyiv Polytechnic Institute named after Igor Sikorsky ", Kyiv, 03056, Ukraine
2 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
Keywords: boundary value problems
Abstract

Dirichlet and Neumann problems in a half-space for the Fokker-Planck-Kolmogorov model equation of a normal Markov process are considered. The properties of the Green's vector functions of these problems are found in explicit form and investigated.

References

1. Barucha-Rid A.T. Elements of the theory of Markov processes and their applications / A.T. Barucha-Rid. – M.: Nauka. Gl. ed. fiz.-mat. lit., 1969. – 511 p.
2. Tikhonov V.I. Nonlinear filtration and quasi-coherent signal reception / V.I. Tikhonov, N.K. Kul'man. – M.: Sov. radio, 1975. – 704 p.
3. Tikhonov V.I. Markov processes / V.I. Tikhonov, M.A. Mironov. – M.: Sov. radio, 1977. – 488 p.
4. Zabolotko T.O. On the fundamental solution of the Cauchy problem for some parabolic equations with increasing coefficients and some of its applications / T.O. Zabolotko, S.D. Ivasyshen, G.S. Pasichnyk // Nauk. visnyk Chernivtsi nat. un-tu im. Yu. Fedkovycha. Ser.: mathematics: zb. na- uk. pr. – Chernivtsi: Chernivtsi nat. un-t , 2012. – Vol. 2, No. 2–3. – P. 81 – 89.
5. Ivasyshen S.D. Linear parabolic boundary problems / S.D. Ivasyshen. - K.: Higher school. Main publishing house, 1987. - 72 p. - (Modern advances in mathematics and its applications).
6. Ivasyshen S.D.Hryna's matrices of parabolic boundary value problems / S.D. Ivasyshen. - K.: Higher school, 1990. - 200 p.

Cite
ACS Style
Turchyna , N.I.; Ivasyshen, S.D. Green's vector functions of boundary value problems for the Fokker-Planck-Kolmogorov model equation of a normal Markov process. Bukovinian Mathematical Journal. 2016, 2
AMA Style
Turchyna NI, Ivasyshen SD. Green's vector functions of boundary value problems for the Fokker-Planck-Kolmogorov model equation of a normal Markov process. Bukovinian Mathematical Journal. 2016; 2(1).
Chicago/Turabian Style
Natalia Ivanivna Turchyna , Stepan Dmytrovych Ivasyshen. 2016. "Green's vector functions of boundary value problems for the Fokker-Planck-Kolmogorov model equation of a normal Markov process". Bukovinian Mathematical Journal. 2 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings