A finite hybrid integral transform (Kontorovich-Lebedev)-Bessel-Fourier on the segment ___ of the polar axis is introduced and its application to solving problems of mathematical physics of inhomogeneous media is shown.
1. Lenyuk M.P., Mikhalevska G.I. Integral transforms of the Kontorovich-Lebedev type. - Chernivtsi: Prut, 2002. - 280 p.
2. Lenyuk M.P. Investigation of basic boundary value problems for the dissipative wave equation of Bessel. - Kyiv, 1983. - 62 p. - (Preprint / Academy of Sciences of the USSR. Institute of Mathematics; 83.3).
3. Stepanov V.V. Course of differential equations. - Moscow: Fizmatgiz. 1959. - 468p.
4. Shilov G.E. Mathematical analysis. Second special course. - Moscow: Nauka, 1965. - 328p.
5. Lenyuk M.P., Shinkaryk M.I. Hybrid integral transformations (Fourier, Bessel, Legendre). Part 1. - Ternopil: Ekonom. Dumka, 2004. - 368p.
6. Lenyuk M.P. Finite hybrid integral transformations generated by classical differential operators of mathematical physics. Volume 1. - Chernivtsi: Prut, 2010. - 352 p.
7. Kurosh A.G. Course of Higher Algebra. - Moscow: Nauka, 1971. - 432 p.
8. Komarov G.M., Lenyuk M.P., Moroz V.V. Finite Hybrid Integral Transformations Generated by Second-Order Differential Equations. - Chernivtsi: Prut, 2001. - 228 p.
9. Tikhonov A.N., Samarsky A.A. Equations of Mathematical Physics. - Moscow: Nauka, 1972. - 735 p.
- ACS Style
- Nikitina , O. Finite hybrid integral transform (Kontorovich-Lebedev)-Bessel-Fourier on the segment __ of the polar axis. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Nikitina O. Finite hybrid integral transform (Kontorovich-Lebedev)-Bessel-Fourier on the segment __ of the polar axis. Bukovinian Mathematical Journal. 2016; 2(1).
- Chicago/Turabian Style
- O. Nikitina . 2016. "Finite hybrid integral transform (Kontorovich-Lebedev)-Bessel-Fourier on the segment __ of the polar axis". Bukovinian Mathematical Journal. 2 no. 1.