Using the method of the Laplace integral transform in combination with the method of Cauchy functions, a solution to the diffusion problem modeled on a three-layer semi-axis by the hybrid Legendre-Fourier-Bessel differential operator is constructed under the assumption that the time variable participates in the boundary condition and in the conjugation conditions.
1. Tikhonov A.N., Samarsky A.A. Equations of mathematical physics. - M.: Nauka, 1972. - 735 p.
2. Konet I.M., Lenyuk M.P. Integral transformations of the Möller-Fock type. - Chernivtsi: Prut, 2002. - 248 p.
3. Lenyuk M.P. Study of basic boundary value problems for the dissipative wave equation of Bes-
village - Kyiv, 1983. - 62 p. - (Preprint / Academy of Sciences of the USSR. Institute of Mathematics; 83.3).
4. Stepanov V.V.Course of differential equations. - M.: Fizmatgiz. 1959. - 468 p.
5. Lavrentyev M.A., Shabat B.V.Methods of the theory of functions of a complex variable. - M.: Nauka, 1987. - 688 p.
6. Kurosh A.G.Higher algebra course. - M.: Nauka, 1971. - 432p.
7. Shilov G.E.Mathematical analysis. Second special course. - M.: Nauka, 1965. - 328p.
8. Lenyuk M.P. Calculation of polyparametric improper integrals by eigenelements of second-order hybrid differential operators. - Volume VI. - Chernivtsi: Prut, 2010. - 404p.
9. Lenyuk M.P., Moroz V.V. Construction of a finite hybrid integral transformation in the presence of a spectral parameter in boundary conditions and conjugation conditions // Scientific Bulletin of Chernivtsi University. Issue 314-315. Mathematics. - Chernivtsi: Ruta, 2006. - P. 105-113.
- ACS Style
- Blazhevsky, S. Diffusion problem in a three-layer semi-bounded medium with soft boundaries. Bukovinian Mathematical Journal. 2016, 2
- AMA Style
- Blazhevsky S. Diffusion problem in a three-layer semi-bounded medium with soft boundaries. Bukovinian Mathematical Journal. 2016; 2(1).
- Chicago/Turabian Style
- Stepan Blazhevsky. 2016. "Diffusion problem in a three-layer semi-bounded medium with soft boundaries". Bukovinian Mathematical Journal. 2 no. 1.