Перейти до основного вмісту
Continuous charges on $L_0$ with an application to the Arrow-Debreu model of economy
Ukrayinetsʹ Oleh 1
1 Department of Aplied Mathematics and Information Technologies, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Riesz space, vector lattice, orthogonally additive operator
Abstract

In a recent paper by the author, joint with O.\,G.~Fotiy and M.\,M.~Popov, we used the orthogonally additive projection of $L_0$ onto the lateral band generated by the unit function, to construct an example of a nonzero orthogonally additive functional on $L_0$, which is continuous at zero. However, all examples of the kind are discontinuous at some other points. So the question on the existence of a nonzero orthogonally additive functional on $L_0$, which is continuous at every point, naturally arises. We give an affirmative answer to this question by constructing of two different types of such examples. Next we apply the obtained results to the Arrow-Debreu model of economy.

References

[1] Aliprantis C. D., Brown D. J., Burkinshaw O. Existence and Optimality of Competitive Equilibria, Springer-Verlag, Berlin. (1989). DOI 10.1007/978-3-662-21893-8
[2] Aliprantis C. D., Burkinshaw O. Positive Operators, Springer, Dordrecht, 2006.
[3] Arrow K. J., Debreu G. Existence of an equilibrium for a competetive economy, Econometrica 1954, 22, 265–290.
[4] Fotiy O., Popov M., Ukrainets O. A characterization of F-spaces containing an isomorph of $\boldsymbol{\ell_0}$, Carpathian Math. Publ. 77 (2025), no 1, 777–777. https://doi.org/10.
[5] Kalton N. J., Roberts J. W. A rigid subspace of L_0. Indiana Univ. Math. J., 27 (1978), no 3, 353–381.
[6] A. Kami´nska, I. Krasikova, M. Popov. Projection lateral bands and lateral retracts, Carpathian Math. Publ., 12 (2020), no. 2, 333–339. DOI: 10.15330/cmp.12.2.333-339
[7] Maslyuchenko V. K. Lectures on measure and integral theory. Part 2. Chernivtsi: Chernivtsi National University (2011), 175 p.
[8] V. Mykhaylyuk, M. Pliev, M. Popov, The lateral order on Riesz spaces and orthogonally additive operators, Positivity 25, no 2 (2021), 291-327. DOI: https://doi.org/10.1007/s11117-020-00761-x
[9] V. Mykhaylyuk, M. Pliev, M. Popov, The lateral order on Riesz spaces and orthogonally additive operators II. Positivity 28, 8 (2024). https://doi.org/10.1007/s11117-023-01025-0
[10] V. Mykhaylyuk, M. Popov. "-shading operator on Riesz spaces and order continuity of orthogonally additive operators. Results in Math. 77, 209 (2022). https://doi.org/10.1007/s00025-022-01742-0
[11] M. Popov, Horizontal Egorov property of Riesz spaces. Proc. Amer. Math. Soc. 149 (2021), no 1, 323–332. DOI: https://doi.org/10.1090/proc/15235
[12] M. Popov, Banach lattices of orthogonally additive operators, J. Math. Anal. Appl. 514, no 1 (2022), Paper No. 126279, 26 pp. doi: https://doi.org/10.1016/j.jmaa.2022.126279
[13] Popov M. M., Ukrainets O. Z. A maximal Riesz-Kantorovich theorem with applications to markets with an arbitrary commodity set. Mat. Studii. 62 (2024), no 2, 199–210. https://doi.org/10.30970/ms.62.2.199-210
[14] S. Rolewicz, Metric linear spaces, PWN, Warszawa (1985).
[15] Vulikh B. Z. Introduction to the theory of partially ordered spaces. Wolters-Noordhoff Sci. Publ. Ltd. Groningen (1967), 387 p.

Published Online 6/16/2025
Cite
ACS Style
Ukrayinetsʹ , O. Continuous charges on $L_0$ with an application to the Arrow-Debreu model of economy. Bukovinian Mathematical Journal. 2025, 13
AMA Style
Ukrayinetsʹ O. Continuous charges on $L_0$ with an application to the Arrow-Debreu model of economy. Bukovinian Mathematical Journal. 2025; 13(1).
Chicago/Turabian Style
Oleh Ukrayinetsʹ . 2025. "Continuous charges on $L_0$ with an application to the Arrow-Debreu model of economy". Bukovinian Mathematical Journal. 13 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings