Перейти до основного вмісту
Semigroup of finite partial order isomorphisms of bounded rank of an infinite linearly ordered set
Gutik Oleg Volodymyrovych 1 , Shchypelʹ M. 2
1 Department of Algebra, Topology and Fundamentals of Mathematics, Lviv Ivan Franko National University, Lviv, 79000, Ukraine
2 Department of Algebra, Topology and Fundamentals of Mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: Inverse semigroup, partial transformation, partial order isomorphism, stable semigroup, Green's relation, congruence
Abstract

We study the algebraic properties of the semigroup $\mathscr{O\!\!I\!}_n(L)$ of finite partial order isomorphisms of rank $\leq n$ of an infinite linearly ordered set $(L,\leqslant)$. In particular, its idempotents, natural partial order, and Green's relation on $\mathscr{O\!\!I\!}_n(L)$ are described. It is proved that the semigroup $\mathscr{O\!\!I\!}_n(L)$ is stable and contains a dense series of ideals, and that all congruences on the semigroup $\mathscr{O\!\!I\!}_n(L)$ are Riesz congruences.

References

[1] Wagner V.V. To the theory of partial transformations. DAN USSR, 1952, 84, 653–656. (in Russian)
[2] Wagner V.V. Generalized groups. DAN USSR, 1952, 84, 1119–1122. (in Russian)
[3] Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
[4] Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups, Vol. II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
[5] Gluskin L.M., Schein B.M., Shneperman L.B., Yaroker I.S. Addendum to “A survey of semigroups of continuous selfmaps”. Semigroup Forum, 1977, 14, 95–125. doi:10.1007/BF02194658
[6] Green J.A. On the structure of semigroups. Ann. Math. Ser. 2, 1951, 54 (1), 163–172. doi:10.2307/1969317
[7] Gutik O., Lawson J., Repovˇs D. Semigroup closures of finite rank symmetric inverse semigroups. Semigroup Forum, 2009, 78 (2), 326–336. doi:10.1007/s00233-008-9112-2
[8] Gutik O.V., Popadiuk O.B. On the semigroup $\mathscr{B}^{\mathscr{F}_n}_\omega$, which is generated by the family $\mathscr{F}_n$ of finite bounded intervals of $\omega$, Carpathian Math. Publ., 2023, 15 (2), 331–355. doi:10.15330/cmp.15.2.331-355
[9] Koch R.J., Wallace A.D. Stability in semigroups, Duke Math. J., 1957, 24 (2), 193–195. doi:10.1215/S0012-7094-57-02425-0
[10] Lawson M. Inverse semigroups. The theory of partial symmetries. Singapore: World Scientific, 1998.
[11] Magill K.D., jun. A survey of semigroups of continuous selfmaps. Semigroup Forum, 1975/76, 11 189–282. doi:10.1007/BF02195270
[12] Petrich M. Inverse semigroups, John Wiley & Sons, New York, 1984.

Cite
ACS Style
Gutik, O.V.; Shchypelʹ , M. Semigroup of finite partial order isomorphisms of bounded rank of an infinite linearly ordered set. Bukovinian Mathematical Journal. 2024, 12 https://doi.org/https://doi.org/10.31861/bmj2024.02.05
AMA Style
Gutik OV, Shchypelʹ M. Semigroup of finite partial order isomorphisms of bounded rank of an infinite linearly ordered set. Bukovinian Mathematical Journal. 2024; 12(2). https://doi.org/https://doi.org/10.31861/bmj2024.02.05
Chicago/Turabian Style
Oleg Volodymyrovych Gutik, M. Shchypelʹ . 2024. "Semigroup of finite partial order isomorphisms of bounded rank of an infinite linearly ordered set". Bukovinian Mathematical Journal. 12 no. 2. https://doi.org/https://doi.org/10.31861/bmj2024.02.05
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings