Перейти до основного вмісту
Nowhere Monotonic Function of the Sierpinski Type Associated with the Representation of Numbers by Cantor Series
Pratsiovytyi Mykola 1,2 , Cherchuk N. 2
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
Keywords: $Q_s$-representation of a number, continuous nowhere nonmonotonic function, Cantorian number system
Abstract

The paper defines a nowhere nonmonotonic function, the argument of which is represented in the \\ Cantorian number system with a sequence of natural bases $(s_k)$, where $s_k=2k+1$:
x=α1s1+α2s1⋅s2+...+αks1⋅s2⋅...⋅sk+...≡Δ(sk)α1α2…αk…,x=α1s1+α2s1⋅s2+...+αks1⋅s2⋅...⋅sk+...≡Δα1α2…αk…(sk),
where $\alpha_k(x) \in A_k \equiv \{0,1,...,s_k-1\}$, $s_k=2k+1$. The value of the function is determined by the chain dependence of the digits of the $Q_s$-image of the number on the digits of the image of the argument and has the following form:
g(x)=g(Δ(sk)α1(x)α2(x)…αk(x)…)=ΔQ3β1β2…βk…,βk∈A3≡{0,1,2},g(x)=g(Δα1(x)α2(x)…αk(x)…(sk))=Δβ1β2…βk…Q3,βk∈A3≡{0,1,2},where $\beta_1=\gamma(\alpha_1)$ and $\beta_k= \gamma(\alpha_k),\:\:\text{if } c_k=0 $ or $\beta_k= 2-\gamma(\alpha_k), \:\:\text{if } c_k\ne 0.$
Also $c_1=c_2=0$, $c_k= c_{k-1},\:\:\text{if }\:\: \alpha_{k-1}\ne \frac{s_{k-1}-1}{2}$ or $ c_k=1-c_{k-1}, \:\:\text{if } \:\:\alpha_{k-1}=\frac{s_{k-1}-1}{2} $ and
$\gamma(\alpha) \in A_3$.
The properties of its levels, differential and fractal properties are described.

References

[1] Bush K.A. Continuous functions without derivatives // Amer. Math. Monthly. — 1952. — 59, no. 4. — P. 222-225.
[2] Cantor G. Uber die einfachen Zahlesysteme // Z. Math.Phys.— 1869. — 10, Bd. 14. — P. 121-128.
[3] Pratsiovytyi M., Vasylenko N. Fractal properties of functions defined in terms of Q-representation // Int. J. of Math. Anal. – 2013. – 7(64). – P. 3155–3169. doi:10.12988/ijma.2013.311278
[4] Sierpinski W. Arytmetyczny przyklad funkcji ciaglej, nierozniczkowalnej // Wektor. – 1914. – № 8. – P. 337-343.
[5] Wunderlich W. Eine uberall stetige und nirgends difftrenziebare funktion // Elem. Math. – 1952. – no.7. – Pp. 73–79.
[6] Pratsiovytyi M.V. Geometry of Classical Binary Representation of Real Numbers — Kyiv: Publishing House of the M. P. Dragomanov National Pedagogical University, 2012. — 68 pages. (in Ukrainian)
[7] Pratsiovytyi M.V. Arbitrary Systems of Real Number Coding and Their Applications — Kyiv: Naukova Dumka, 2022. — 316 pages. (in Ukrainian)
[8] Pratsiovytyi M.V. Nowhere Monotonic Singular Functions// Scientific Journal of the M. P. Dragomanov National Pedagogical University. Series 1. Physical and Mathematical Sciences. — 2011. – No.12 — P.24- 35. (in Ukrainian)
[9] Pratsiovytyi M.V. Fractal Approach in the Study of Singular Distributions – Kyiv: Publishing House of the M.P. Dragomanov National Pedagogical University. – 1998. – 296 pages. (in Ukrainian)
[10] Pratsiovytyi M.V., Vasylenko N.A. A Non-Differentiable Function as a Generalization of the Well- Known Sierpinski Function // Scientific Journal of the M.P. Dragomanov National Pedagogical University. Series 1, Physical and Mathematical Sciences. – Kyiv: M.P. Dragomanov National Pedagogical University, 2010. – No. 11. – P. 170–181. (in Ukrainian)
[11] Pratsiovytyi M.V., Vasylenko N.A. A Family of Continuous Functions with a Dense Set of Singularities // Scientific Journal of the National Pedagogical Dragomanov University. Series 1, Physical and Mathematical Sciences.. — 2011. – No. 12. – P. 152–167. (in Ukrainian)
[12] Pratsovytyi M. V., Svynchuk O. V. Scattering of Values of a Fractal Continuous Non-Monotonic Cantor- Type Function // Nonlinear Oscillations, 2018, Vol. 21, No. 1. – P. 116–130. (in Ukrainian)
[13] Pratsovytyi M., Panasenko O. Differential and Fractal Properties of a Class of Self-Affine Functions Bulletin of Lviv University, Series Mechanics and Mathematics, 2009, Issue 70., P. 128–142. (in Ukrainian)
[14] Pratsovytyi M. V., Cherchuk N. V., Vovk Yu. Yu., Shevchenko A. V. Nowhere Monotonic Functions Related to Representations of Numbers by Cantor Series Collection of Works of the Institute of Mathematics of the NAS of Ukraine, 2019, Vol. 16, No. 3. — P. 232–243. (in Ukrainian)
[15] Pratsovytyi M. V., Kalashnikov A. V. Self-Affine Singular and Nowhere Monotonic Functions Related to Q-Representations of Real Numbers// krainian Mathematical Journal, 2013, Vol. 65, No. 3. — P.405-417. (in Ukrainian)

Cite
ACS Style
Pratsiovytyi, M.; Cherchuk , N. Nowhere Monotonic Function of the Sierpinski Type Associated with the Representation of Numbers by Cantor Series. Bukovinian Mathematical Journal. 2024, 12 https://doi.org/https://doi.org/10.31861/bmj2024.02.18
AMA Style
Pratsiovytyi M, Cherchuk N. Nowhere Monotonic Function of the Sierpinski Type Associated with the Representation of Numbers by Cantor Series. Bukovinian Mathematical Journal. 2024; 12(2). https://doi.org/https://doi.org/10.31861/bmj2024.02.18
Chicago/Turabian Style
Mykola Pratsiovytyi, N. Cherchuk . 2024. "Nowhere Monotonic Function of the Sierpinski Type Associated with the Representation of Numbers by Cantor Series". Bukovinian Mathematical Journal. 12 no. 2. https://doi.org/https://doi.org/10.31861/bmj2024.02.18
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings