The asymptotic properties of the Fourier-Stiltjes transform of a class of generalized Bernoulli convolutions are investigated.
The emphasis is on finding necessary and sufficient conditions for the equality of zero, unity of the upper bound $L$ at infinity of the modulus of the corresponding Fourier-Stiltjes transform. The value of the quantity $L$ is calculated under certain conditions imposed on the elements of the corresponding convolution.
[1] Goncharenko Y. V. Asymptotic properties of the characteristic function of random variables with independent binary digits and convolutions of singular distributions. Scientific notes of the NPU named after Drahomanova 2002. 3, 376–390.(in Ukrainian)
[2] Goncharenko Y. V., Mykytyuk I. O. Behavior of the modulus of the characteristic function of a random variable with independent s-adic digits at infinity. Scientific notes of the NPU named after Drahomanova 2008. 9, 121–127. (in Ukrainian)
[3] Makarchuk O.Asymptotic behavior of the Fourier – Stieltjes transform of the distribution of a random power series, Nonlinear Oscillations 2023, 26, №4, 495 – 504. doi: 10.3842/nosc.v26i4.1450
[4] Makarchuk O. P. Asymptotic behavior of the characteristic function of a Jessen-Wintner type distribution, Bukovinian Mathematical Journal 2023, 11, №2, 173 – 182. (in Ukrainian) doi: 10.31861/bmj2023.02.17
[5] Pratsiovyti M. V., Lytvynuk A. A.Distributions of random variables represented by an s-adic fraction with an excess set of digitsDistributions of random variables represented by an s-adic fraction with an excess set of digits, Scientific notes of the NPU named after Drahomanova 1999, 1, 136 – 142. (in Ukrainian)
[6] Albeverio S., Goncharenko Y., Pratsiovyti M., Torbin G. Convolutions of distributions of random variables with independent binary digits. Random Oper. Stochastic Equations 2007, 15, №1, 89–97. doi: 10.1515/ROSE.2007.006
[7] Bohr H. Fastperiodische Funktionen. Berlin: J.Springer, (1932).
[8] Erdos P. On a family of symmetric Bernoulli convolutions, Amer. J. Math 1939, 61, 974 – 975. doi: 10.2307/2371641
[9] Garsia A. Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc 1962, 102, 409 – 432. doi: 10.2307/1993615
[10] Jessen B., Wintner A. Distribution function and Riemann Zeta-function. Trans.Amer.Math.Soc 1935, 38, 48–88. doi: 10.2307/1989728
[11] Levy P.Sur les sries don’t les termes sont des variables independantes. Studia math 1931, 3, 119–155. doi: 10.4064/sm-3-1-119-155
[12] Peres Y., Schlag W., Solomyak B. Sixty years of Bernoulli convolutions Fractal Geometry and Stochastics II. Progress in Probability 2000, 46, 39 – 65. doi:10.1007/978-3-0348-8380-12
[13] Pisot C. La repartition modulo 1 et nombres algebriques, Ann. Scu. Norm. Sup. Pisa 1938, 27, 205 – 248.
[14] Schvartz L. Sur le module de la fonction caracteristicue du calcul des probabilites. C.R.Acad.Sci.Paris 1941, 212, 418–421.
[15] Solomyak B. On the random series $\sum \pm \lambda^{n}$ (an Erdos problem), Annals of Math 1995, 142, 611 – 625. doi: 10.2307/2118556.
[16] Vijayaraghavan T. On the fractional parts of the powers of a number, Proc. Cambridge Philos. Soc 1941,37, 349 – 357. doi: 10.1017/S0305004100017989
- ACS Style
- Makarchuk, O. Asymptotic behavior of the Fourier-Stieltjes transform module of one class of generalized Bernoulli convolutions. Bukovinian Mathematical Journal. 2024, 12 https://doi.org/https://doi.org/10.31861/bmj2024.02.10
- AMA Style
- Makarchuk O. Asymptotic behavior of the Fourier-Stieltjes transform module of one class of generalized Bernoulli convolutions. Bukovinian Mathematical Journal. 2024; 12(2). https://doi.org/https://doi.org/10.31861/bmj2024.02.10
- Chicago/Turabian Style
- Oleg Makarchuk. 2024. "Asymptotic behavior of the Fourier-Stieltjes transform module of one class of generalized Bernoulli convolutions". Bukovinian Mathematical Journal. 12 no. 2. https://doi.org/https://doi.org/10.31861/bmj2024.02.10