The paper deals with three-dimensional high-order nonlinear systems. A class of bounded
finite-time stabilizing controls is presented. Korobov’s controllability function is constructed
to ensure global finite-time convergence. A simulation example is given to demonstrate the
effectiveness of the proposed approach.
[1] Bebiya M.O. Global synthesis of bounded controls for systems with power nonlinearity. Visnyk of
V.N. Karazin Kharkiv National University, Ser. Mathematics, Applied Mathematics and Mechanics
2015, 81, 36–51. doi:10.26565/2221-5646-2015-81-04
[2] Bebiya M.O., Korobov V.I. On Stabilization Problem for Nonlinear Systems with Power Principal
Part. Journal of Mathematical Physics, Analysis, Geometry 2016, 12 (2), 113–133.
doi:10.15407/mag12.02.113
[3] Chen C.-C., Sun Z.Y. Output feedback finite-time stabilization for high-order planar systems with an
output constraint. Automatica 2020, 114, 108843. doi:10.1016/j.automatica.2020.108843
[4] Coron J.-M., Praly L. Adding an integrator for the stabilization problem. Systems Control Lett. 1991,
17(2), 89–104. doi:10.1016/0167-6911(91)90034-C
[5] Korobov V.I. A genaral approach to the solution of the bounded control synthesis problem in a contollability
problem. Math USSR Sb. 1980, 37, 535–557. doi:10.1070/SM1980v037n04ABEH002094
[6] Korobov V.I., Sklyar G.M. Methods for constructing of positional controls and an admissible maximum
principle. Differential Equations 1990, 26, 1422–1431.
[7] Korobov V.I., Skoryk V.O. Synthesis of restricted inertial controls for systems with multivariate control.
J. Math. Anal. Appl. 2002, 275 (1), 84–107. doi:10.1016/S0022-247X(02)00243-3
[8] Korobov V.I., Skorik V.O. Positional Synthesis of Bounded Inertial Controls for Systems with One-
Dimensional Control. Differential Equations 2002, 38 (1), 332–348. doi:10.1023/A:1016001723925
[9] Korobov V.I., Skoryk V.O. Construction of Restricted Controls for a Non-equilibrium Point in Global
Sense. Vietnam J. Math. 2015, 43, 459–469. doi:10.1007/s10013-015-0132-4
[10] Korobov V.I., Bebiya M.O. Stabilization of one class of nonlinear systems. Automation and Remote
Сontrol 2017, 78 (1), 1–15. doi:10.1134/S0005117917010015
[11] Lin W., Qian C. Adding one power integrator: a tool for global stabilization of high-order lowertriangular
systems. Systems Control Lett. 2000, 39(5), 339–351. doi:10.1016/S0167-6911(99)00115-2
[12] Sun Z.-Y., Yun M.M., Li T. A new approach to fast global finite-time stabilization of high-order nonlinear
system. Automatica 2017, 81, 455–463. doi:10.1016/j.automatica.2017.04.024
[13] Tian W., Qian C., Du H. A generalised homogeneous solution for global stabilisation of a class
of non-smooth upper-triangular systems. International Journal of Control 2014, 87(5), 951–963.
doi:10.1080/00207179.2013.862347
[14] Wang X., Xiang Z. Global finite-time stabilisation of high-order nonlinear systems: a dynamic
gain-based approach. International Journal of Systems Science 2019, 50(8), 1677–1687.
doi:10.1080/00207721.2019.1622814
- ACS Style
- Bebiya , M.O. On the bounded control synthesis for three-dimensional high-order nonlinear systems. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.02.01
- AMA Style
- Bebiya MO. On the bounded control synthesis for three-dimensional high-order nonlinear systems. Bukovinian Mathematical Journal. 2023; 11(2). https://doi.org/https://doi.org/10.31861/bmj2023.02.01
- Chicago/Turabian Style
- M. O. Bebiya . 2023. "On the bounded control synthesis for three-dimensional high-order nonlinear systems". Bukovinian Mathematical Journal. 11 no. 2. https://doi.org/https://doi.org/10.31861/bmj2023.02.01