Перейти до основного вмісту
Inverse problem on determining many unknowns from Schwartz-type distributions
Lopushanska Halyna 1 , Myaus Olga 2 , Pasichnyk Olena 1
1 Department of Mathematical Statistics and Differential Equations, Ivan Franko National University of Lviv, Lviv, 79007, Ukraine
2 Department of Higher Mathematics, Lviv polytechnic national university, Lviv, 79007, Ukraine
Keywords: fractional diffusion equation, fractional derivative, inverse problem, Schwartz-type distributions, time-integral over-determination condition
Abstract

We find the sufficient conditions for the unique (local in time) solvability of an inverse problem of finding m unknown functions $R_l(x)$, $l\in \{1,\dots,m\}$ from the Schwartz-type distributions $S'_{\gamma,(a)}(\Bbb R^n)$ in a source term of a diffusion equation
\[D^{\beta}_t u-A(x,D)u=\sum\limits_{l=1}^mR_l(x)g_l(t)+F(x,t), \;\; (x,t) \in Q=\Bbb R^n\times (0,T]
\]
with the Djrbasian-Nersesian-Caputo time-fractional derivative of the order $\beta\in (0,1)$ where $A(x,D)$ is an elliptic differential operator of the second order,
\[S_{\gamma,(a)}(\Bbb R^n)=\{v\in C^\infty(\Bbb R^n): ||v||_{k,(a)}=\sup\limits_{|\alpha|\le k,x\in \Bbb R^n}e^{a(1-\frac{1}{k}) |x|^{\frac{1}{\gamma}}}|D^{\alpha}v(x)|<+\infty\;\;\forall k\in \Bbb N, k\ge 2\}.\]

We use time-integral over-determination conditions
\[\frac{1}{T}\int_{0}^{T}u(x,t)\eta_l(t)dt=\Phi_l(x), \;\;x\in \Bbb R^n,
\;\;l\in  \{1,\dots,m\}\]
with the given $\eta_l\in C^1[0,T]$ and Schwartz-type distributions $\Phi_l(x)$, $l\in \{1,\dots,m\}$. Note that time-integral over-determination conditions were used in the study of various inverse problems in various functional spaces.

By properties of the Green vector-function the problem boils down to solving linear operator equation of the second kind with respect to the unknown solution $u$ of the Cauchy problem, continuous with values in Schwartz-type distributions, and a linear inhomogeneous algebraic system of equations for finding expressions of unknown functions $R_l(x)$, $l\in \{1,\dots,m\}$ through it. We generalize the results of [11] on the classical solvability of a problem with two unknown functions from Schwartz-type spaces of rapidly decreasing functions at infinity on the right-hand side of such an equation.

References

[1] Aleroev T.S., Kirane M., Malik S.A. Determination of a source term for a time fractional diffusion
equation with an integral type over-determination condition. EJDE. 2013, 2013 (270), 1-16.
[2] Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and
pseudo-differential equations of parabolic type. Birkhauser Verlag, Basel-Boston-Berlin, 2004.
[3] Gelfand I.M., Shilov G.E. Gelfand I.M., Shilov G.E. Spaces of test and generalized functions, Vol. 2.
Gostechizdat, Moskow. 1958 (in Russian) Також: Generalized Functions, Vol. 2: Spaces of Fundamental
and Generalized Functions. AMS Chelsea Publ., 2016.
[4] Janno J., Kasemets K. Uniqueness for an inverse problem for a semilinear time-fractional diffusion
equation. Inverse Probl. Imaging. 2017, 11 (1), 125-149. doi: 10.3934/ipi.2017007
[5] Jin B., Rundell W. A turorial on inverse problems for anomalous diffusion processes. Inverse Problems.
2015, 31, 035003. –doi:10.1088/0266-5611/31/3/035003.
[6] Kian Y., Yamamoto M. On existence and uniqueness of solutions for semilinear fractional wave equations.
Fract. Calculus Appl. Anal. 2017. 20, 117-138.
[7] Kinash N., Janno Ja. An Inverse Problem for a Generalized Fractional Derivative with an Application
in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations.
Mathematics. 2019, 7 (19). ARTN 1138.10.3390/math7121138.
[8] Kochubei A.N. Fractional parabolic systems. Potential analysis. 2012, 37, 1-30.
[9] Lopushanska H., Lopushansky A. Inverse problem with a time-integral condition for a fractional diffusion
equation. Math. Meth. Appl. Sci. 2019, 42 (6), 3327-3340. https://doi.org/10.1002/mma.5587
[10] Lopushanska H., Lopushansky A. Inverse problems for a time fractional diffusion equation in the
Schwartz-type distributions. Math. Meth. Appl. Sci. 2021, 44 (3), 2381-2392.
[11] Lopushansky A.O., Lopushanska H.P. Inverse problem for fractional diffusion equation in Schwarztype
spaces. J. Math. Sci. 2022, 265 (3), 394-407. https://link.springer.com/article/10.1007/s10958-
022-06060-y.
[12] Lopushansky A., Lopushanska H., Myaus O. An inverse fractional source problem in a space of periodic
spatial distributions. Fractional differ. calc. 2016, 6 (2), 267-274. http://dx.doi.org/10.7153/fdc-06-17.
[13] Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett.
1996, 9 (6), 23-28.
[14] Sakamoto K., Yamamoto M. Initial value/boundary-value problems for fractional diffusion-wave equations
and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382 (1), 426-447.
[15] Schneider W.R., and Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134-
144.
[16] Slodiˆcka M., ˆSiˆskovˆa K., Van Bockstal K. Uniqueness for an inverse source problem of determining a
space dependent source in a time-fractional diffusion equation. Appl. Math. Lett. 2019, 91, 15-21.

[17] Wang Jun-Gang, Ran Yu-Hong. An iterative method for an inverse source problem of time-fractional
diffusion equation. Inverse Problems in Science and Engineering. 2018, 26 (10).
[18] Wen J., Cheng J.-F. The method of fundamental solution for the inverse source problem for the spacefractional
diffusion equation. Inverse Problems in Science and Engineering. 2018, 26 (7), 925-941.
[19] Zhang Y. and Xu X. Inverse source problem for a fractional diffusion equation. Inverse Problems. 2011,
27, 1-12.

Cite
ACS Style
Lopushanska, H.; Myaus, O.; Pasichnyk, O. Inverse problem on determining many unknowns from Schwartz-type distributions. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.02.16
AMA Style
Lopushanska H, Myaus O, Pasichnyk O. Inverse problem on determining many unknowns from Schwartz-type distributions. Bukovinian Mathematical Journal. 2023; 11(2). https://doi.org/https://doi.org/10.31861/bmj2023.02.16
Chicago/Turabian Style
Halyna Lopushanska, Olga Myaus, Olena Pasichnyk. 2023. "Inverse problem on determining many unknowns from Schwartz-type distributions". Bukovinian Mathematical Journal. 11 no. 2. https://doi.org/https://doi.org/10.31861/bmj2023.02.16
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings