Перейти до основного вмісту
Continuous nowhere monotonic function defined by terms continued A-representations of numbers
Ratushniak Sofiya 1,2
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
Keywords: continued fraction, continued representation of numbers, cylinder, nowhere monotonic function, function level set, variation of the function
Abstract

We study structural and variational properties of one continued class of nowhere monotonic continuous functions unbounded variational, defined equality
\[f(x=\Delta^{A_3}_{\alpha_1\alpha_2...\alpha_n...})=\Delta^{A_2}_{\beta_1\beta_2...\beta_n...},\]
\[\beta_1=\begin{cases}
              1 & \mbox{if } \alpha_1=2,\\
              0 & \mbox{if } \alpha_1\neq 2,
            \end{cases}\;\;\;\;
            \beta_{n+1}=\begin{cases}
              \beta_{n} & \mbox{if } \alpha_n+\alpha_{n+1}\neq 2,\\
              1-\beta_{n} & \mbox{if } \alpha_n+\alpha_{n+1}=2,
            \end{cases} \alpha_n \in \{0,1,2\}, n\in N,\]
argument and values of which presented by form continued fraction. Elements $a_n$ of continued fraction $[0;a_1,a_2,...,a_n,...]$, consist to three- and two-symbol sets ($A_e=\{e_0,e_1,e_2\}$ $A_{\tau}=\{\tau_0,\tau_1\}$) corresponding. The function is analog of  Bush-Wunderlich function and Tribin-function.

References

[1] Bush K.A. Continuous functions without derivatives // Amer. Math. Monthly. — 1952. — 58, no. 4. —
P. 222-225.
[2] Dmytrenko S. O., Kyurchev D. V., Prats’ovytyi M. V. $A_2$-continued fraction representation of real
numbers and its geometry // Ukrainian Mathematical Journal. — 2009. — №4. — P. 541-555.
https://doi.org/10.1007/s11253-009-0236-7
[3] Pratsiovytyi M.V.,Goncharenko Ya.V., Dmytrenko S.O., Lysenko I.M.,Ratushniak S.P., About one
class of function with fractal properties // Bukovynian Mathematical Journal. 2021, T. 6, № 1 —
P.273–283. (in Ukrainian)
[4] Stanzhytskyi O.M. Investigation of invariant sets of Ito stochastic systems with the use of Lyapunov
functions // Ukrainian Mathematical Journal, 2001, 53 (11), Pages: 1882 - 1894.
[5] Wunderlich W. Eine uberall stetige und nirgends differenziebare funktion// Elem. Math. — 1952. – no.
7. — Pp. 73-79.
[6] Pratsiovytyi M.V., Goncharenko Ya.V., Lysenko I.M., Ratushniak S.P. Continued $A_2$-fractions and
singular functions // Mat. Stud., 58, 2022. — С.3–12.
[7] Pratsiovytyi M.V., Goncharenko Ya.V., Drozdenko V.O. Cantorvals as sets of non-elementary continued
fractions with a bounded alphabet // Proceedings of the Institute of Mathematics of the NationalAcademy
of Sciences of Ukraine. 2021, Vol. 16, № 3. — P.210–218. (in Ukrainian)
[8] Pratsiovytyi M.V., Baranovsky O.M., Maslova Yu.P. Generalization of the Tribune function // Nonlinear
oscillations, 2019, Vol. 22, № 3. — P.380–390. (in Ukrainian)
[9] Pratsiovytyi M.V. Two-character encoding systems of real numbers and their application. — Kyiv:
Scientific opinion, 2022. — 316p. (in Ukrainian)
[10] Pratsiovytyi M.V. There are no monotonic singular functions // Scientific journal of M.P. Dragomanov
National University. Series 1. Phys.-math. of science, 2011.— №12. — P. 24–36. (in Ukrainian)
[11] Pratsiovytyi M.V. Continuous cantor projectors // Research methods of algebraic and topological
structures. — Kyiv: KSPI, 1989. — P.95–105. (in Russian)
[12] Pratsiovytyi M.V., Panasenko O.B. Fractal properties of one class of one-parameter continuous nowhere
differentiable functions // Scientific journal of M.P. Dragomanov National University. Series 1. Phys.-
math. of science. – К.: NPU named after M.P. Drahomanova, 2006. — № 7. — P. 160–167. (in Ukrainian)
[13] Pratsiovytyi M.V., Ratushniak S.P. A continuous nowhere differentiable function with fractal properties
defined in terms of the $Q_2$-image // Nonlinear oscillations, Vol.23. №2, 2020. — P.231–252. (in Ukrainian)

[14] Pratsiovytyi M.V., Chuikov A.S., Kyurchev D.V. Chained $A_3$-fractions: basics of metric theory. //
Proceedings of the Institute of Mathematics of the NationalAcademy of Sciences of Ukraine. 2017.
Vol.14, № 4. P. 19–110. (in Ukrainian)
[15] Pratsiovytyi M.V., Chuikov A.S. A continuous nowhere monotone function defined in terms of negatriple
and chain $A_2$-fractions. Proceedings of the Institute of Mathematics of the NationalAcademy of
Sciences of Ukraine. 2018. Vol.15, № 1. P. 147–161. (in Ukrainian)
[16] Ratushniak S.P. Continuous nowhere monotonic function defined it term continued $A_2$-
fractionsrepresentation of numbers // Bukovinian Math. Journal, Vol.11. №1, 2023. — P.126–133. (in
Ukrainian)

Cite
ACS Style
Ratushniak, S. Continuous nowhere monotonic function defined by terms continued A-representations of numbers. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.02.23
AMA Style
Ratushniak S. Continuous nowhere monotonic function defined by terms continued A-representations of numbers. Bukovinian Mathematical Journal. 2023; 11(2). https://doi.org/https://doi.org/10.31861/bmj2023.02.23
Chicago/Turabian Style
Sofiya Ratushniak. 2023. "Continuous nowhere monotonic function defined by terms continued A-representations of numbers". Bukovinian Mathematical Journal. 11 no. 2. https://doi.org/https://doi.org/10.31861/bmj2023.02.23
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings