We study structural and variational properties of one continued class of nowhere monotonic continuous functions unbounded variational, defined equality
\[f(x=\Delta^{A_3}_{\alpha_1\alpha_2...\alpha_n...})=\Delta^{A_2}_{\beta_1\beta_2...\beta_n...},\]
\[\beta_1=\begin{cases}
1 & \mbox{if } \alpha_1=2,\\
0 & \mbox{if } \alpha_1\neq 2,
\end{cases}\;\;\;\;
\beta_{n+1}=\begin{cases}
\beta_{n} & \mbox{if } \alpha_n+\alpha_{n+1}\neq 2,\\
1-\beta_{n} & \mbox{if } \alpha_n+\alpha_{n+1}=2,
\end{cases} \alpha_n \in \{0,1,2\}, n\in N,\]
argument and values of which presented by form continued fraction. Elements $a_n$ of continued fraction $[0;a_1,a_2,...,a_n,...]$, consist to three- and two-symbol sets ($A_e=\{e_0,e_1,e_2\}$ $A_{\tau}=\{\tau_0,\tau_1\}$) corresponding. The function is analog of Bush-Wunderlich function and Tribin-function.
[1] Bush K.A. Continuous functions without derivatives // Amer. Math. Monthly. — 1952. — 58, no. 4. —
P. 222-225.
[2] Dmytrenko S. O., Kyurchev D. V., Prats’ovytyi M. V. $A_2$-continued fraction representation of real
numbers and its geometry // Ukrainian Mathematical Journal. — 2009. — №4. — P. 541-555.
https://doi.org/10.1007/s11253-009-0236-7
[3] Pratsiovytyi M.V.,Goncharenko Ya.V., Dmytrenko S.O., Lysenko I.M.,Ratushniak S.P., About one
class of function with fractal properties // Bukovynian Mathematical Journal. 2021, T. 6, № 1 —
P.273–283. (in Ukrainian)
[4] Stanzhytskyi O.M. Investigation of invariant sets of Ito stochastic systems with the use of Lyapunov
functions // Ukrainian Mathematical Journal, 2001, 53 (11), Pages: 1882 - 1894.
[5] Wunderlich W. Eine uberall stetige und nirgends differenziebare funktion// Elem. Math. — 1952. – no.
7. — Pp. 73-79.
[6] Pratsiovytyi M.V., Goncharenko Ya.V., Lysenko I.M., Ratushniak S.P. Continued $A_2$-fractions and
singular functions // Mat. Stud., 58, 2022. — С.3–12.
[7] Pratsiovytyi M.V., Goncharenko Ya.V., Drozdenko V.O. Cantorvals as sets of non-elementary continued
fractions with a bounded alphabet // Proceedings of the Institute of Mathematics of the NationalAcademy
of Sciences of Ukraine. 2021, Vol. 16, № 3. — P.210–218. (in Ukrainian)
[8] Pratsiovytyi M.V., Baranovsky O.M., Maslova Yu.P. Generalization of the Tribune function // Nonlinear
oscillations, 2019, Vol. 22, № 3. — P.380–390. (in Ukrainian)
[9] Pratsiovytyi M.V. Two-character encoding systems of real numbers and their application. — Kyiv:
Scientific opinion, 2022. — 316p. (in Ukrainian)
[10] Pratsiovytyi M.V. There are no monotonic singular functions // Scientific journal of M.P. Dragomanov
National University. Series 1. Phys.-math. of science, 2011.— №12. — P. 24–36. (in Ukrainian)
[11] Pratsiovytyi M.V. Continuous cantor projectors // Research methods of algebraic and topological
structures. — Kyiv: KSPI, 1989. — P.95–105. (in Russian)
[12] Pratsiovytyi M.V., Panasenko O.B. Fractal properties of one class of one-parameter continuous nowhere
differentiable functions // Scientific journal of M.P. Dragomanov National University. Series 1. Phys.-
math. of science. – К.: NPU named after M.P. Drahomanova, 2006. — № 7. — P. 160–167. (in Ukrainian)
[13] Pratsiovytyi M.V., Ratushniak S.P. A continuous nowhere differentiable function with fractal properties
defined in terms of the $Q_2$-image // Nonlinear oscillations, Vol.23. №2, 2020. — P.231–252. (in Ukrainian)
[14] Pratsiovytyi M.V., Chuikov A.S., Kyurchev D.V. Chained $A_3$-fractions: basics of metric theory. //
Proceedings of the Institute of Mathematics of the NationalAcademy of Sciences of Ukraine. 2017.
Vol.14, № 4. P. 19–110. (in Ukrainian)
[15] Pratsiovytyi M.V., Chuikov A.S. A continuous nowhere monotone function defined in terms of negatriple
and chain $A_2$-fractions. Proceedings of the Institute of Mathematics of the NationalAcademy of
Sciences of Ukraine. 2018. Vol.15, № 1. P. 147–161. (in Ukrainian)
[16] Ratushniak S.P. Continuous nowhere monotonic function defined it term continued $A_2$-
fractionsrepresentation of numbers // Bukovinian Math. Journal, Vol.11. №1, 2023. — P.126–133. (in
Ukrainian)
- ACS Style
- Ratushniak, S. Continuous nowhere monotonic function defined by terms continued A-representations of numbers. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.02.23
- AMA Style
- Ratushniak S. Continuous nowhere monotonic function defined by terms continued A-representations of numbers. Bukovinian Mathematical Journal. 2023; 11(2). https://doi.org/https://doi.org/10.31861/bmj2023.02.23
- Chicago/Turabian Style
- Sofiya Ratushniak. 2023. "Continuous nowhere monotonic function defined by terms continued A-representations of numbers". Bukovinian Mathematical Journal. 11 no. 2. https://doi.org/https://doi.org/10.31861/bmj2023.02.23