Перейти до основного вмісту
On the decomposition problem for functions of small exponential type
Voitovych Christina 1
1 Department of Mathematics and Economics, Drohobych Ivan Franko state Pedagogical University, Lviv region, Drohobych, 82100, Ukraine
Keywords: Hardy space, Paley-Wiener space, decomposition
Abstract

The technique of decomposition for functions into the sum or product of two functions is often used to facilitate the study of properties of functions. Some decomposition problems in the weighted Hardy space, Paley-Wiener space, and Bergman space are well known. Usually, in these spaces, functions are represented as the sum of two functions, each of them is "big" only in the first or only in the second quarter.
The problem of decomposition of functions has practical applications, particularly in information theory. In these applications, it is often necessary to find those solutions of the decomposition problem whose growth on the negative real semi-axis is "small".
In this article we consider the decomposition problem for an entire function of any small exponential type in $\{z:\Re z<0\}$. We obtain conditions for the existence of solutions of the above problem.

References

[1] Ber G. Z. On interferention phenomenon in integral metric and approximation of entire functions of
exponential type, Teor. Funktsii, Funkts. Anal. Pril. 1980, 34, 11-24.
[2] Carlota C., Ornelas A. Constructive decomposition of any $L^1 (a, b)$ function as sum of a strongly convergent
series of integrable functions each one positive or negative exactly in open sets, Mediterr. J.
Math. 2023, 20, 226. doi:10.1007/s00009-023-02414-1
[3] Chyzhykov I.E. Growth of pth means of analytic and subharmonic functions in the unit disc and angular
distribution of zeros, Isr.J.Math. 2020, 236, 931–957. doi:10.1007/s11856-020-1996-x
[4] Dilnyi V. M. On the equivalence of some conditions for weighted Hardy spaces, Ukr.Math.J. 2006, 58,
1425–1432. doi:10.1007/s11253-006-0141-2
[5] Dilnyi V. M. Splitting of some spaces of analytic functions, Ufa Math.J 2014, 6(2), 25-34.
doi:10.13108/2014-6-2-25
[6] Dilnyi V. M. Equivalent definition of some weighted Hardy spaces, Ukr.Math.J. 2008, 60, 1477–1482.
doi:10.1007/s11253-009-0140-1
[7] Dilnyi V. M., Hishchak T. I. On splitting functions in Paley-Wiener space, Mat.Stud. 2016, 45(2) ,
137-148. doi:10.15330/ms.45.2.137-148
[8] Dilnyi V., Huk Kh. Identification of unknown filter in a half-strip, Acta Appl.Math. 2020, 165, 199-205.
doi:10.1007/s10440-019-00250-8
[9] Dryanov D. Interpolation Decomposition of Paley-Wiener-Schwartz Space with Application to Signal
Theory and Zero Distribution, STSIP 2009, 8, 53-75. doi:10.1007/BF03549508
[10] Eoff C. The discrete nature of the Paley - Wiener spaces, Proc. Amer. Soc. 1995, 123, 505-512.
[11] Favorov S. Local versions of the Wiener–Levy theorem, Mat. Stud. 2022, 57 (1), 45-52. doi:
10.30970/ms.57.1.45-52
[12] Flornes K. Sampling and interpolation in the Paley - Wiener space $L_{\pi}^p$, $0<p\leq 1$, Publicacions
Matematiques 1998, 42 (1), 103-118. www.jstor.org/stable/43736618

[13] Franklin D. J., Hogan J. A., Larkin K. G. Hardy, Paley–Wiener and Bernstein spaces in
Clifford analysis, Complex Variables and Elliptic Equations 2017, 62 (9), 1314-1328. doi:
10.1080/17476933.2016.1250411
[14] Koorwinder T. A new proof a Paley - Wiener type theorem for the Jacobi transform, Ark.Mat. 1975,
13, 145-159. doi:10.1007/BF02386203
[15] Levin B., Ljubarskii Yu., Interpolation by means of special classes of entire functions
and related expanstions in series of exponentials, Math.USSR Izv. 1975, 9(3), 621-662.
doi:10.1070/IM1975v009n03ABEH001493
[16] Lyubarskii Yu.I. Representation of functions in Hp on half-plane and some applications, Teor. Funktsii,
Funkts. Anal. Pril. 1982, 38, 76–84.
[17] Martirosian V. M. On a theorem of Djrbasian of the Phraugmen-Lindelof type, Mat. Stud. 1989, 144,
21-27.
[18] Miliczka E. Constructive decomposition of a function of two variables as a sum of functions of one
variable, Proc. Amer. Soc. 2009, 137 (2), 607-614. doi:0002-9939(08)09528-2
[19] Mourrain B. Polynomial–Exponential Decomposition From Moments, Found Comput. Math. 2018, 18,
1435–1492. doi: 10.1007/s10208-017-9372-x
[20] Paley R.E.A.C. Fourier transforms in complex domain, Providence AMS, 1934.
[21] Vynnytskyi B.V., Dilnyi V.M. On an analogue of Paley-Wiener’s theorem for weighted Hardy spaces,
Mat. Stud. 14 (2000), 35–40.
[22] Yulmukhametov R.S. Splitting entire functions with zeros in a strip, Sb. Math 1995 186 (7), 1071–1084.
doi:10.1070/SM1995v186n07ABEH000057
[23] Yulmukhametov R.S. Solution of the Ehrenpreis factorization problem, Sb. Math 1999 190 (4), 597–629.
doi:10.1070/sm1999v190n04ABEH000400
[24] Wen Z., Deng G., Qu F. Rational function approximation of Hardy space on half strip, Complex
Variables and Elliptic Equation 2018, 64(8), 447–460. doi:10.1080/17476933.2018.1447931
[25] Zhao J., Kostic M., Du W-S. On new decomposition theorems for mixed-norm Besov spaces with ingredient
modulus of smoothness, Symmetry 2023, 15 (3), 642. doi:10.3390/sym15030642

Cite
ACS Style
Voitovych, C. On the decomposition problem for functions of small exponential type. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/ https://doi.org/10.31861/bmj2023.01.04
AMA Style
Voitovych C. On the decomposition problem for functions of small exponential type. Bukovinian Mathematical Journal. 2023; 11(1). https://doi.org/ https://doi.org/10.31861/bmj2023.01.04
Chicago/Turabian Style
Christina Voitovych. 2023. "On the decomposition problem for functions of small exponential type". Bukovinian Mathematical Journal. 11 no. 1. https://doi.org/ https://doi.org/10.31861/bmj2023.01.04
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings