In the paper we justify existence and unity $B$-representation of numbers of segment $(0;1)$, which uses as a basis a positive number $a$ that satisfies the condition $0<a<\frac{1}{3}$ in particular the positive root $\tau$ of the equation $x^2+x-1=0$, bilateral sequence $(\Theta_n)$: $\Theta_0=\frac{1-3a}{1-a}$, $\Theta_{-n}=\Theta_n=a^{|n|}$ and alphabet $Z=\{0,\pm 1, \pm 2, \pm, \dots \},$\\
namely
$$x=b_{\alpha_1}+\sum\limits_{k=2}^{m}b_{\alpha_k}\prod\limits_{i=1}^{k-1}\Theta_{\alpha_i}\equiv
\Delta^{B}_{\alpha_1\alpha_2...\alpha_m(\emptyset)},$$
$$x=b_{\alpha_1}+\sum\limits_{k=2}^{\infty}b_{\alpha_k}\prod\limits_{i=1}^{k-1}\Theta_{\alpha_i}\equiv
\Delta^{B}_{\alpha_1\alpha_2...\alpha_n...},$$
where $\alpha_n\in Z$, $\Theta_n>0~\forall n\in Z$, $\sum\limits_{n=-\infty}^{+\infty}\Theta_n=1$,
$b_{n+1}\equiv\sum\limits_{i=-\infty}^{n-1}=b_n+\Theta_n$ $\forall n\in Z$.
The geometry of $B$-representations of numbers is described (geometric content of numbers, properties of cylinder and tail sets, topological and metric properties of sets with restrictions on the use of numbers). The left and right shift operators of numbers are studied, a group of continuous transformations of the unit interval preserving the tails of the $B$-representation of numbers is described.
[1] Galambos J. Representations of real numbers by infinite series.Berlin: Springer-Verlag, 1976. 146 p.
[2] Pratsovytyi M. V., Baranovskyi O. M., Bondarenko O.I., Ratushniak S.P. One class of continuous
locally complicated functions related to infinite-symbol Φ-representation of numbers. Matematychni
Studii, 59(2), 123-131. https://doi.org/10.30970/ms.59.2.123-131
[3] Pratsovytyi M.V., Lechinskii O.L. Properties of random variable defined by the distributions of elements
of their $\widetilde{Q}_{\infty}$-representation // Theor. Probability and Math. Statist. No.57, 1998. — P.143–148.
[4] Pratsiovytyi M.V., Feshchenko O.Yu. Topological-metric and fractal properties of the distributions on
the set of the incomplete sums of series of positive terms // Theory of Stochastic Processes. — 2007.
— 13(29), № 1-2. — P. 205–224.
[5] Schweiger F. Ergodic theory of fibred systems and metric number theory. New York: Oxford University
Press., 1995. 320 p.
[6] Bondarenko O.I., Pratsovytyi M. V. Cantor’s number system associated with the binary sequence and
the Fibonacci sequence // Coll. of the Institute of Mathematics of the National Academy of Sciences of
Ukraine. — 2017. — Vol.14, № 4. — Kyiv: Institute of Mathematics of the National Academy of Sciences
of Ukraine, 2017. P.178–187.
[7] Pratsovytyi M., Bondarenko O., Lysenko I., Ratushniak S. Continuous functions with locally complex
and fractal properties associated with an infinite B-image of numbers // Nonlinear oscillations, 2023,
Vol. 26. № 3.
[8] Pratsiovytyi M.V. Two-symbol encoding systems of real numbers and their application. — Kyiv: Scientific
opinion, 2022. — 316 p. (in Ukrainian)
[9] Pratsiovytyi M.V. Fractal approach to investigation of singular probability distributions. — Natl.
Pedagog. Mykhailo Drahomanov Univ. Publ., Kyiv, 1998. (in Ukrainian)
- ACS Style
- Pratsiovytyi, M.; Bondarenko, O.; Vasylenko, N.; Lysenko , I. Infinite-symbol $B$-representation of real numbers and some of its applications. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.01.08
- AMA Style
- Pratsiovytyi M, Bondarenko O, Vasylenko N, Lysenko I. Infinite-symbol $B$-representation of real numbers and some of its applications. Bukovinian Mathematical Journal. 2023; 11(1). https://doi.org/https://doi.org/10.31861/bmj2023.01.08
- Chicago/Turabian Style
- Mykola Pratsiovytyi, Olga Bondarenko, Natalia Vasylenko, Iryna Lysenko . 2023. "Infinite-symbol $B$-representation of real numbers and some of its applications". Bukovinian Mathematical Journal. 11 no. 1. https://doi.org/https://doi.org/10.31861/bmj2023.01.08