For infinite-symbol $E$-representation of numbers $x \in (0, 1]$:
\[
x = \sum_{n=1}^\infty
\frac{1}{(2+g_1)\ldots(2+g_1+g_2+\ldots+g_n)}
\equiv \Delta^E_{g_1g_2\ldots g_n\ldots},
\]
where $g_n \in \Z_0 = \{ 0, 1, 2, \ldots \}$,
we consider a class of $E$-cylinders, i.e.,
sets defined by equality
\[
\Delta^E_{c_1\ldots c_m}
= \left\{ x \colon x = \Delta^E_{c_1\ldots c_mg_{m+1}\ldots g_{m+k}\ldots}, \;
g_{m+k} \in \Z_0, \; k \in \N \right\}.
\]
We prove that, for determination (calculation)
of fractal Hausdorff-Besicovitch dimension
of any Borel set $B \subset [0, 1]$,
it is enough to use coverings of the set $B$
by connected unions of $E$-cylinders of the same rank
that belong to the same cylinder of the previous rank.
[1] Baranovskyi O.M., Pratsiovytyi M.V., Torbin G.M. Ostrogradsky–Sierpi´nski–Pierce series and their
applications. Nauk. Dumka, Kyiv, 2013. (in Ukrainian)
[2] Hetman B.I. Metric properties of the set of numbers defined by conditions on their expansions by Engel
series. Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky 2009,
no. 10, 47–58. (in Ukrainian)
[3] Pratsiovytyi M.V. Fractal approach to investigation of singular probability distributions. Natl. Pedagog.
Mykhailo Drahomanov Univ. Publ., Kyiv, 1998. (in Ukrainian)
[4] Pratsiovytyi M.V., Hetman B.I. Engel series and their applications. Nauk. Chasop. Nats. Pedagog.
Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky 2006, no. 7, 105–116. (in Ukrainian)
[5] Albeverio S., Baranovskyi O., Kondratiev Yu., Pratsiovytyi M. On one class of functions related to
Ostrogradsky series and containing singular and nowhere monotonic functions. Nauk. Chasop. Nats.
Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky 2013, no. 15, 24–41.
[6] Albeverio S., Koval V., Pratsiovytyi M., Torbin G. On classification of singular measures and fractal
properties of quasi-self-affine measures in R2. Random Oper. Stoch. Equ. 2008, 16 (2), 181–211.
doi:10.1515/ROSE.2008.010
[7] Billingsley P. Hausdorff dimension in probability theory. Illinois J. Math. 1960, 4 (2), 187–209.
doi:10.1215/ijm/1255455863
[8] Billingsley P. Hausdorff dimension in probability theory II. Illinois J. Math. 1961, 5 (2), 291–298.
doi:10.1215/ijm/1255629826
[9] Billingsley P. Ergodic theory and information. Wiley, New York, London, Sydney, 1965.
[10] Engel F. Entwicklung der Zahlen nach Stammbr¨uchen. In: Verh. d. 52. Versamml. dtsch. Philologen
u. Schulm¨anner, Marburg, 1913, Teubner, Leipzig, 1914, 190–191.
[11] Kinney J.R., Pitcher T.S. The dimension of some sets defined in terms of f-expansions. Z. Wahrscheinlichkeitstheorie
verw. Geb. 1966, 4 (4), 293–315. doi:10.1007/BF00539116
- ACS Style
- Baranovskyi, O.; Hetman , B.І.; Pratsiovytyi, M. Cylindrical sets of E-representation of numbers and fractal Hausdorff–Besicovitch dimension. Bukovinian Mathematical Journal. 2023, 11 https://doi.org/https://doi.org/10.31861/bmj2023.01.05
- AMA Style
- Baranovskyi O, Hetman BІ, Pratsiovytyi M. Cylindrical sets of E-representation of numbers and fractal Hausdorff–Besicovitch dimension. Bukovinian Mathematical Journal. 2023; 11(1). https://doi.org/https://doi.org/10.31861/bmj2023.01.05
- Chicago/Turabian Style
- Oleksandr Baranovskyi, B. І. Hetman , Mykola Pratsiovytyi. 2023. "Cylindrical sets of E-representation of numbers and fractal Hausdorff–Besicovitch dimension". Bukovinian Mathematical Journal. 11 no. 1. https://doi.org/https://doi.org/10.31861/bmj2023.01.05