Перейти до основного вмісту
Convolution of two singular distributions: classic Cantor type and random variable with independent nine digits
Pratsiovytyi Mykola 1,2 , Ratushniak Sofiya 1,2 , Symonenko Yu. O. 3 , Shpytuk D. S. 3
1 Department of dynamic systems and fractal analysis, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 01001, Ukraine
2 Department of Higher Mathematics, National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
3 National Pedagogical Dragomanov University, Kyiv, 01001, Ukraine
Keywords: s-shaped representation of numbers, number system with redundant alphabet, Cantor set, Cantor type set, singularly distributed random variable, distribution spectrum, arithmetic sum of sets
Abstract

We consider distribution of random variable $\xi=\tau+\eta$, where $\tau$ and $\eta$ independent random variables, moreover $\tau$ has classic Cantor type distribution and $\eta$ is a random variable with independent identically distributed digits of the nine-digit representation. With additional conditions for the distributions of the digits $\eta$, sufficient conditions for the singularity of the Cantor type of the distribution $\xi$ are specified. To substantiate the statements, a topological-metric analysis of the representation of numbers $x\in [0;2]$ in the numerical system with base $9$ and a seventeen-symbol alphabet (a set of numbers) is carried out. The geometry (positional and metric) of this representation is described by the properties of the corresponding cylindrical sets.

References

[1] Albeverio S., Gontcharenko Ya., Pratsiovytui M., Torbin G. Convolutions of distributions of random variable with independent binary digits. Random Operators and Stochastic Equations. 2007. Vol. 15, no.1. P.89–104.
[2] Goncharenko Ya.V., Pratisovytyi M.V., Tirbin G.M., Topological and metric and fractal properties of the convolution of two singular distributions of random variables with independent binary digits. Theory of Probability and Mathematical Statistics 2002, No. 67, P.9–19.(in Ukrainian)
[3] Guthrie J. A., Nymann J. E. The topological structure of the set of subsums of an infinite series. Colloq. Math. 1988, 55 (2), P. 323–327, http://eudml.org/doc/265741.
[4] Kakeya S. On the partial sums of an infinite series. Tohoku Sci Rep., 1914, 3 (4), P. 159–164, DOI:10.11429/PTMPS1907.7.14250.
[5] Mendes P., Oliveira F. On the topological structure of the arithmetic sum of two Cantor sets. Nonlinearity, 1994, 7 (2), P. 329–343, doi: 10.1088/0951-7715/7/2/002.
[6] Mykytuk I.O., Pratsiovytyi M.V. The binary number system with redundant digits and its corresponding metric number theory. Scientific notes of the Dragomanov National Pedagogical Universyty. Physical and mathematical sciences 2003, 4, P. 270–290. (in Ukrainian)
[7] Nymann J. E. Linear combination of Cantor sets. Colloq. Math., 1995, 68. P. 259–264, DOI: 10.2478/tmmp-2013-00
[8] Pratsiovytyi M.V. Fractal approach to the study of singular distributions - Kyiv: Nats. Pedagog. Mykhailo Dragomanov Univ., 1998. (in Ukrainian)
[9] Pratsiovytyi M.V. Convolutions of singular distributions. Additional NAS of Ukraine, 1997, N 9, P. 36–42. (in Ukrainian)
[10] Solomyak B. On the measure of arithmetic sums of Cantor sets. Indag. Mathem., N.S. 1997, 8, P. 133– 141, DOI:10.1016/S0019-3577(97)83357-5.
[11] Turbin A.F., Pratsiovytyi M.V. Fractal set, functions and distibutions. Naukova dumka, 1992, 208 p.

Cite
ACS Style
Pratsiovytyi, M.; Ratushniak, S.; Symonenko, Y.O.; Shpytuk, D.S. Convolution of two singular distributions: classic Cantor type and random variable with independent nine digits. Bukovinian Mathematical Journal. 2023, 10 https://doi.org/https://doi.org/10.31861/bmj2022.02.16
AMA Style
Pratsiovytyi M, Ratushniak S, Symonenko YO, Shpytuk DS. Convolution of two singular distributions: classic Cantor type and random variable with independent nine digits. Bukovinian Mathematical Journal. 2023; 10(2). https://doi.org/https://doi.org/10.31861/bmj2022.02.16
Chicago/Turabian Style
Mykola Pratsiovytyi, Sofiya Ratushniak, Yu. O. Symonenko, D. S. Shpytuk. 2023. "Convolution of two singular distributions: classic Cantor type and random variable with independent nine digits". Bukovinian Mathematical Journal. 10 no. 2. https://doi.org/https://doi.org/10.31861/bmj2022.02.16
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings