Перейти до основного вмісту
Elementary remarks to the relative growth of series by the system of Mittag-Leffler functions
Mulyava Oksana Myroslavivna 1
1 Department of Higher Mathematics named after Prof. Mozhara V.I., Kyiv National University of Food Technologies, Kyiv, 01033, Ukraine
Keywords: relative growth, entire function, Mittag-Leffler function, regularly converging series
Abstract

For a regularly converging  in ${\Bbb C}$ series $F_{\varrho}(z)=\sum\limits_{n=1}^{\infty} a_n E_{\varrho}(\lambda_nz)$, where
$0<\varrho<+\infty$ and $E_{\varrho}(z)=\sum\limits_{k=0}^{\infty}\frac{z^k}{\Gamma(1+k/\varrho)}$
is the Mittag-Leffler function, it is investigated the asymptotic behavior of the function $E_{\varrho}^{-1} (M_{F_{\varrho}}(r))$, where  $M_f(r)=\max\{|f(z)|:\,|z|=r\}$. For example, it is proved that if $\varlimsup\limits_{n\to \infty}\frac{\ln\,\ln\,n}{\ln\,\lambda_n}\le \varrho$ and $a_n\ge 0$  for all $n\ge 1$, then $\varlimsup\limits_{r\to+\infty}\frac{\ln\,E^{-1}_{\varrho}(M_{F_{\varrho}}(r))}{\ln\,r}=\frac{1}{1-\overline{\gamma}\varrho}$, where
$\overline{\gamma}=\varlimsup\limits_{n\to\infty}\frac{\ln\,\lambda_n}{\ln\,\ln\,(1/a_n)}$.

A similar result is obtained for the Laplace-Stiltjes type integral  $I_{\varrho}(r) = \int\limits_{0}^{\infty}a(x)E_{\varrho}(r x) d F(x)$.

References

[1] Nachbin L. An extension of the notion of integral function of the finite exponential type. Arias Acad. Sci. Brazil. Ciuncias, 1944, 16, 143-147.
[2] Boas R. P., Buck R. C. Polynomial expansions of analytic functions. Springer, Berlin, 1958.
[3] Vinnitsky B. V. Some approximation properties of generalized systems of exponentials. Dep. in UkrNIINTI 25.02.1991, Drohobych, 1991. (in Russian)
[4] Roy Ch. On the relative order and lower order of an entire functiion. Bull. Soc. Cal. Math. Soc., 2010, 102 (1), 17-26.
[5] Mulyava O. M., Sheremeta M. M. Relative growth of Dirichlet series with different abscissas of absolute convergence. Ukr. Math. Journal, 2020, 72 (12), 1535-1543.
[6] Leont’ev A. F. Generalizations of exponential series. Nauka, Moscow, 1981. (in Russian)
[7] Sheremeta M. M. On the growth of series in systems of functions and Laplace-Stieltjes integrals. Math. Stud., 2021, 55 (2), 124-131.
[8] Sheremeta M. M. Relative growth of series in system functions and Laplace-Stieltjes type integrals. Axioms, 2021, 10 (2), 43.
[9] Reddy A. R. On entire Dirichlet series of zero order. Tohoky Math. J., 1966, 18 (2), 144-155.
[10] Gol’dberg A. A., Ostrovsky I. V. Distribution of values of meromorphic functions. Nauka, Moscow, 1976. (in Russian)
[11] Sheremeta M. M. Asymptotical behavior of Laplace-Stietjes integrals. VNTL Publishers, Lviv, 2010.
[12] Sheremeta M. M., Kuryliak A. O. On the growth of Laplace-Stietjes integrals. Math. Stud., 2018, 50 (1), 22-35.

Cite
ACS Style
Mulyava, O.M. Elementary remarks to the relative growth of series by the system of Mittag-Leffler functions. Bukovinian Mathematical Journal. 2022, 10 https://doi.org/https://doi.org/10.31861/bmj2022.01.03
AMA Style
Mulyava OM. Elementary remarks to the relative growth of series by the system of Mittag-Leffler functions. Bukovinian Mathematical Journal. 2022; 10(1). https://doi.org/https://doi.org/10.31861/bmj2022.01.03
Chicago/Turabian Style
Oksana Myroslavivna Mulyava. 2022. "Elementary remarks to the relative growth of series by the system of Mittag-Leffler functions". Bukovinian Mathematical Journal. 10 no. 1. https://doi.org/https://doi.org/10.31861/bmj2022.01.03
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings