Перейти до основного вмісту
New characterizations of some continuity weakenings
Nesterenko Vasyl Volodymyrovych 1
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: mapping $f$
Abstract
We study characterizations of various weakening of continuity in terms of the closure. In particular, we prove that a mapping $f$ is a $B$-quasi-continuous if and only if $f(\overline{A}) ⊆ \overline{f(A)}$  for any pre-open set $A$ such that $int \overline{A}$ is a connected open set.
References

[1] Kellum K.R. Functions that separate $X × \mathbb{R}$ // Real Anal. Exch. Summer Symposium 2009. – P. 21-23.

[2] Karlova O.O. Mykhaylyuk V.V. On Gibson functions with connected graphs // Math. Slovaca. – 2013. – 63 , N3. – С. 479-492.

[3] Keller P.S. Chaotic behavior of Newton’s method // Real Anal. Exch. – 1993. – 18, N. 2. – P. 490–507.

[4] Mimna R.A. Omega-limit sets and non- continuous functions // Real Anal. Exch. – 1998. – 23 , N. 1. – P. 267-273.

[5] Borsik J. Bilateral quasicontinuity in topological spaces // Tatra Mt. Math. Publ. – 2004. – 28 . – P. 159-168.

[6] Husain T. Almost continuous mappings // Pr. Mat. – 1966. – 10 . – P. 1-7.

[7] Levine N. Semi-open sets and semi-continuity in topological spaces // Amer. Math. Monthly. – 1963. – 70 . – P. 36-41.

[8] Gibson R.G., Natkaniec T. Darboux like functions // Real Anal. Exch. – 1996. – 22 , 2. – P. 492-533.

[9] Stallings J. Fixed point theorem for connectivity maps // Fund. Math. – 1959. – 47. – P. 249-263.

[10]  Mashhour A.S., Hasanein I.A., El-Deeb S.N. A note on semi-continuity and precontinuity // Indian J. Pure Appl. Math. – 1982. – 13 , N. 10. – P. 1119–1123.

[11] Kempisty S. Sur les fonctions quasicontinues // Fundam. Math. – 1932. – 19 . – P. 184-197.

[12] Bruckner A.M., Ceder Jack G. Darboux continuity // Jahresber. Dtsch. Math.-Ver. – 1965. – 67 . – P. 93-117.

[13] Borsik J. On the points of bilateral quasicontinuity of functions // Real Anal. Exch. – 1994. – 19 , 2. – P. 529-536.

[14] Njåstad O. On some classes of nearly open sets // Pacific J. Math. – 1965. – 15 . – P. 961–970.

[15] Noiri T. A function which preserves connected spaces // Casopis Pest. Mat. – 1982. – 101 . – P. 393-396.

[16] Frolik Z. Remarks concerning the invariance of Baire spaces under mappings // Czech. Math. J. – 1961. – 11 . – P. 381-385.

[17] Maslyuchenko V.K. On different and aggregate modifications of continuity // Mat. Studies. - 2006. - 25, N.2. - P. 213-218.

Cite
ACS Style
Nesterenko, V.V. New characterizations of some continuity weakenings. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Nesterenko VV. New characterizations of some continuity weakenings. Bukovinian Mathematical Journal. 2016; 1(3-4).
Chicago/Turabian Style
Vasyl Volodymyrovych Nesterenko. 2016. "New characterizations of some continuity weakenings". Bukovinian Mathematical Journal. 1 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings