Перейти до основного вмісту
Integral representation of the solution of a mixed problem for one class of evolution equations of parabolic type
Konet Ivan Mykhailovych 1 , Pylypyuk Tatyana Mykhailovna 2
1 Department of Mathematics, Kamianets-Podilskyi National University named after Ivan Ohienko, Kamianets-Podilskyi, 32302, Ukraine
2 Department of Computer Sciences, Kamianets-Podilskyi National University named after Ivan Ohienko, Khmelnytska, Kamianets-Podilskyi, 32300, Ukraine
Keywords: the integral representation, a mixed problem, evolution equations of parabolic type
Abstract
Using the method of integral Laplace transform in combination with the method of Cauchy functions, we obtain an integral representation of exact analytical solution of a mixed problem for a system of evolutionary equations of parabolic type modeled by hybrid differential Fourier-Legendre-Legendre operator on the piece-homogeneous polar axis $r ≥ R_0 > 0$ with soft boundary.
References

[1] Gorodetsky V.V. Boundary properties of smooth in the layer solutions of parabolic type equations / V.V. Gorodetsky - Chernivtsi: Ruta, 1998. 225 p.

[2] Matiychuk M.I. Parabolic and elliptic boundary value problems with features / M.I. Matiychuk - Chernivtsi: Prut, 2003. 248 p.

[3] Deineka, V.S. Models and methods for solving problems with conjugation conditions / V.S. Deineka, I.V. Sergienko, V.V. Skopetsky. Skopetsky. - K.: Nauk. dumka, 1998. - 614 p.

[4] Sergienko, I.V. Mathematical modelling and research of processes in inhomogeneous media / I.V. Sergienko, V.V.  Skopetsky, V.S. Deineka. - K.: Nauk. dumka, 1991. - 432 p.

[5] Tikhonov, A.N. Equations of mathematical physics / A.N. Tikhonov, A.A. Samarsky. - M.: Nauka, 1972. - 735 p. 

[6] Konet I.M. Stationary and unsteady temperature fields in cylindrical-circular regions / I.M. Konet, M.P. Lenyuk: Prut, 2001. 312 p.

[7] Konet I.M. Temperature fields in piecewise homogeneous cylindrical regions / I.M. Konet, M.P. Lenyuk - Chernivtsi: Prut, 2004. 276 p.

[8] Lenyuk M.P. Temperature fields in flat piecewise homogeneous orthotropic regions / M.P. Lenyuk - K.: Institute of Mathematics of the National Academy of Sciences of Ukraine, 1997. - 188 с.

[9] Gromyk A.P. Temperature fields in piecewise homogeneous spatial media / A.P. Gromyk, I.M. Konet, M.P. Lenyuk: Abetka-Svit, 2011. - 200 p.

[10] Stepanov V.V. Course of differential equations / V.V. Stepanov. - M.: Fizmatgiz. 1959.- 468 p.

[11] Konet I.M. Integral transformations of the Mehler-Fock type / I.M. Konet, M.P. Lenyuk - Chernivtsi: Prut, 2002. - 248 p.

[12] Lavrentiev, M.A. Methods of the theory of functions of a complex variable / M.A. Lavrentiev, B.V. Shabat. - M.: Nauka, 1987. - 688 p.

[13] Shilov G.E. Mathematical analysis. The second special course / G.E. Shilov. - M.: Nauka, 1965.- 328 p.

[14] Leniuk M.P. Hybrid integral transforms (Fourier, Bessel, Legendre). Part 1. / M.P. Lenyuk, M.I. Shynkaryk. - Ternopil: Ekonomichna Dumka, 2004. 368 p.

[15] Kurosh A.G. Course of higher algebra / A.G. Kurosh. - M.: Nauka, 1971. - 432 p.

[16] Gradshtein, I.S. Tables of integrals, sums, series and products / I.S. Gradshtein, I.M. Ryzhik. - M.: Nauka, 1971. - 1108 p.

Cite
ACS Style
Konet, I.M.; Pylypyuk, T.M. Integral representation of the solution of a mixed problem for one class of evolution equations of parabolic type. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Konet IM, Pylypyuk TM. Integral representation of the solution of a mixed problem for one class of evolution equations of parabolic type. Bukovinian Mathematical Journal. 2016; 1(3-4).
Chicago/Turabian Style
Ivan Mykhailovych Konet, Tatyana Mykhailovna Pylypyuk. 2016. "Integral representation of the solution of a mixed problem for one class of evolution equations of parabolic type". Bukovinian Mathematical Journal. 1 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings