Перейти до основного вмісту
Inductive boundaries generated by a pair of normed spaces
Maslyuchenko Volodymyr Kyrylovych 1 , Filipchuk Olga Igorivna 2
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Department of Mathematical Problems of Management and Cybernetics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: іnductive boundaries, normed spaces
Abstract

We introduce inductive limits $[E,F]$ generated by a pair of normed spaces, such that the identity embedding $F \hookrightarrow E$ is continuous. We also investigate in what cases an inductive limit $[E,F]$ is not either almost regular or strict and in what cases $[E,F]$ is a strongly $σ$ -metrizable space.

References

[1] Masliuchenko V.K., Mykhailiuk V.V., Filipchuk O.I. Cumulative continuity of $K_hC$ - functions with values in Moore spaces // Ukr. Math. Journ. - 2008 - 60, № 11. - P. 1539-1547.

[2] Hola L., Piotrowski Z. Set of continuity points of functions with values in generalized metric spaces // Tatra Mt. Math. Publ. – 2009. – 42 . – P. 149–160.

[3] Masliuchenko V., Myronyk O. Aggregate continuity of mappings with values in different generalisations of metric spaces // All-Ukrainian scientific conference ‘Modern problems of probability theory and mathematical analysis’. Vorokhta, 20-26 February, 2012. - Ivano-Frankivsk: Precarpathian National University, 2012. - P. 5-6.

[4] Filipchuk O.I. Non-negatively continuous mappings and their analogues with values in non-metric spaces: PhD in Physics and Mathematics. - Chernivtsi, 2010. 124 p.

[5] Karlova O.O., Maslyuchenko V.K., Mironik O.D. Bing plane and non-negatively continuous mappings. Studies. - 2012. - Vol. 38, № 2. - P. 188-193.

[6] Maslyuchenko V.K. Separably continuous mappings with values in strict inductive limits // XIV School on the Theory of Operators in Functional Spaces. Ch. II. - Novgorod, 1989. - P. 70.

[7] Maslyuchenko V.K. Non-negatively continuous mappings with values in inductive boundaries // Ukr. Math. Journ. - 1992. - 44, № 3. - P. 380-384.

[8] Maslyuchenko V.K. Linear continuous operators - Chernivtsi: Ruta, 2002. - 72 p.

[9] Maslyuchenko V.K. Bounded sets in inductive limits // Chernov.un. - Chernivtsi, 1983. - 14p. - Dep. in Ukr-NIINTI 25.X.1983, N1204-Uk-D83.

[10] Maslyuchenko V.K., Filipchuk O.I. About one class of inductive boundaries // V All-Ukrainian Scientific Conference ‘Nonlinear Problems of Analysis’ in memory of prof. Vasylyshyn B.V. Abstracts - Ivano-Frankivsk, 19-21 September, 2013 - Ivano-Frankivsk: Precarpathian National University, 2013 - P. 43-44.

[11] Masliuchenko V.K. First types of topological vector spaces: Ruta, 2002. - 72 p.

[12] Sebastian-et-Silva J. On some classes of locally convex spaces // Math. - 1957. - I, №1. - P. 60-77.

[13] Makarov B.M. About inductive limits of normalised spaces // DANSSR. - 1958. -119, №6. - P. 1092-1094.

[14] Makarov B.M. About inductive limits of normalised spaces // Vestnik Leningr. un-ta, series Mat., mech. and astron. -1965. - №13, issue 3. - P. 50-58.

[15] Makarov B.M.About some pathological properties of inductive limits of B -spaces // Uspekhi mat. nauk. - 1963.- №18, issue 3. - P. 171-178.

[16] J. Kucera, and K. McKennon. Dieudonne-Schwartz theorem on bounded sets in inductive limits // Proc. Amer. Math. Soc. – 1980. – 78 , №3. – P. 366-368.

[17] J. Kucera, C. Bosch. Dieudonne-Schwartz theorem on bounded sets in inductive limits. II // Proc. Amer. Math. Soc. – 1982. – 86 , №3. – P. 392-394.

[18] C. Bosch, J. Kucera, and K. McKennon. Dual characterization of the Dieudonne-Schwartz theorem on bounded sets // Internat. J. Math. and Math.Sci. – 1983. – 6 , №1. – P. 189-192.

[19] Qiu Jing-Hui. Dieudonne-Schwartz theorem in inductive limits of metrizable spaces // Proc. Amer. Math. Soc. – 1984. – 92 , №2. – P. 255-257.

[20] Qiu Jing-Hui. Dieudonne-Schwartz theorem in inductive limits of metrizable spaces II // Proc. Amer. Math. Soc. – 1990. – 108 , №1. – P. 171-175.

Cite
ACS Style
Maslyuchenko, V.K.; Filipchuk, O.I. Inductive boundaries generated by a pair of normed spaces. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Maslyuchenko VK, Filipchuk OI. Inductive boundaries generated by a pair of normed spaces. Bukovinian Mathematical Journal. 2016; 1(3-4).
Chicago/Turabian Style
Volodymyr Kyrylovych Maslyuchenko, Olga Igorivna Filipchuk. 2016. "Inductive boundaries generated by a pair of normed spaces". Bukovinian Mathematical Journal. 1 no. 3-4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings