[1] Krasovsky N.N. Theory of motion control - M.: Nauka, 1968. - 476 p.
[2] Nakonechny A.G. Minimax estimation of functionals from solutions of variational equations in Hilbert spaces. - Kiev: KSU, 1985. - 82 p.
[3] Nakonechny A.G. Minimax estimates in systems with distributed parameters. - Kiev: Preprint of the Institute of Cybernetics of the Academy of Sciences of the Ukrainian SSR, №79, 1979.- 55 p.
[4] Podlipenko Y.K., Grishchuk N.V. Minimax estimation of solutions of degenerate Neumann boundary value problems for elliptic equations based on observations distributed on the system of surfaces. // Sistemni doslidzhennya i i informatsii tehnologii. - 2004. - №2 p. 104 - 128.
[5] Podlypenko Y.K., Hryshchuk N.V. Estimation of parameters of degenerate elliptic Neumann boundary value problems under uncertainty. Series: Physical and mathematical sciences. - 2004. - № 1. p. 262 - 269.
[6] Podlypenko Y.K., Pertsov A.S. Minimum estimation of solutions of a boundary value problem for a biharmonic equation with Neumann-type boundary conditions // Bulletin of Kyiv University. Series: Physical and Mathematical Sciences. - 2008. - №. 4. p. 153 - 160.
[7] Podlipenko Y.K., Nakonechniy O.G., Pertsov A.S. Minimax estimation of the boundary value problem solution for the linear elasticity theory equations with Neumann type boundary conditions // Dopovidy NAS of Ukraine. - 2010. - №2. p. 43 - 50.
- ACS Style
- Pertsov, A.S. Guaranteed estimation of linear continuous functionals from solutions of a biharmonic equation under integral observation operators. Bukovinian Mathematical Journal. 2016, 1
- AMA Style
- Pertsov AS. Guaranteed estimation of linear continuous functionals from solutions of a biharmonic equation under integral observation operators. Bukovinian Mathematical Journal. 2016; 1(3-4).
- Chicago/Turabian Style
- Andriy Serhiyovych Pertsov. 2016. "Guaranteed estimation of linear continuous functionals from solutions of a biharmonic equation under integral observation operators". Bukovinian Mathematical Journal. 1 no. 3-4.