[1] Duvaut G, Lions J.L. Les inéquations en mécanique et en physique. Dunod, Paris, 1972. – 384 p.
[2] Clowinski R., Lions J.L., Tremolieres R. Analyse numerique des inéquations variationnells, Dunod, Paris, 1976. – 574 p.
[3] Zeitz F. Modern theory of solid state. - M.L.: Gostekhizdat, 1949. - 736 p.
[4] Konakov P.K., Verevochkin T.E. Heat and mass transfer at obtaining single crystals. - M.:Metallurgy, 1971. - 387 p.
[5] Moiseev E.I. About solvability of one nonlocal boundary value problem // Diff. equations. -2001. - 37, № 11. - P. 1555-1567.
[6] Bitsadze A.B.Some classes of equations in partial derivatives. - M.: Nauka, 1981. - 448 p.
[7] Smirnov M.M. Growing elliptic and hyperbolic equations. - M.: Nauka, 1966. - 292 p.
[8] Matiychuk M.I. Parabolic and elliptic boundary value problems with features - Chernivtsi: Prut, 2003. - 248 p.
[9] Esteban Maria J. Nonexistence result for positive solutions of nonlinear elliptic degenerate problems // Nonlinear Anal. Theory Math. and Appl. – 1996, 26, № 4. – P. 835-843.
[10] Amano Kazuo. Maximum principle for degenerate elliptic-parabolic equations with Venttsel’s boundary conditions. – Trans. Amer. Math. Soc. – 1981. 263, № 2. – P. 377-396.
[11] Friedman A. Equations with partial derivatives of parabolic type. - M.: Mir, 1968. -427 p.
[12] Pukalsky I.D. Boundary value problems for nonuniformly parabolic and elliptic equations with degeneracy: Monograph. - Chernivtsi, 2008. - 253 p.
- ACS Style
- Pukalskyi, I. Boundary value problem with inequalities for elliptic equations with degeneration. Bukovinian Mathematical Journal. 2016, 1
- AMA Style
- Pukalskyi I. Boundary value problem with inequalities for elliptic equations with degeneration. Bukovinian Mathematical Journal. 2016; 1(3-4).
- Chicago/Turabian Style
- Ivan Pukalskyi. 2016. "Boundary value problem with inequalities for elliptic equations with degeneration". Bukovinian Mathematical Journal. 1 no. 3-4.