[1] Levitan B. M. Almost-periodic functions. - M.: Gostekhizdat, 1953. - 396 p.
[2] Demidovich B. P. Lectures on the mathematical theory of stability. - M.: Nauka, 1967. - 472 p.
[3] Slyusarchuk V. Y. Criterion for the existence of almost periodic solutions of nonlinear equations that does not use $\mathcal{H}$-classes of these equations // Bukovinian Mathematical Journal. - 2013 - 1, № 1-2. - P. 136-138.
[4] Favard J. Sur les équations différentielles à coefficients presquepériodiques // Acta math. – 1927. – 51 . – P. 31–81.
[5] Amerio L. Soluzioni quasiperiodiche, o limital, di sistemi differenziali non lineari quasi-periodici, o limitati // Ann. mat. pura ed appl. – 1955. – 39 . – P. 97–119.
[6] Slyusarchuk, V. E. To the theory of reversibility of almost periodic operators // Mat. notes. - 1987.- 42, № 1. - P. 50-59.
[7] Yu. L. Daletsky, M. Crane. G. Stability of solutions of differential equations in Banach space. - M.: Nauka, 1970. - 535 p.
[8] Samoilenko A. M., Perestiuk M. O., Parasyuk I. O. Differential equations. - Kyiv: Lybid, 2003. - 600 p.
[9] Slyusarchuk V. Y. Conditions of almost periodicity of bounded solutions of nonlinear difference equations with a continuous argument // Nonlinear Oscillations - 2013. - 16, № 1. - P. 118-124.
[10] Slyusarchuk V. Y. Conditions for the existence of almost periodic solutions of nonlinear differential equations in Banach space // Ukr. Math. Journ. - 2013. - 65, № 2. - P. 307-312.
[11] Muhamadiev E. On the invertibility of functional operators in the space of functions bounded on the axes // Mat. notes – 1972. –11, № 3.– P. 269–274.
[12] Mukhamadiev E. Studies on the theory of periodic and bounded solutions of differential equations // Mat. notes. - 1981. - 30, № 3. - P. 443-460.
[13] Slyusarchuk V. E. Reversibility of almost periodic c-continuous functional operators // Mat. coll. - 1981. -116(158), № 4(12). - P. 483-501.
[14] Slyusarchuk V. E.Reversibility of non-autonomous differential-functional operators //Mat. sb. - 1986. -130(172), № 1(5). - P. 86-104.
[15] Slyusarchuk V. E. Necessary and sufficient conditions of reversibility of non-autonomous functional-differential operators // Mat. notes.- 1987. - 42, № 2. - P. 262-267.
[16] Amerio L. Sull equazioni differenziali quasi- periodiche astratte // Ric. mat. – 1960. – 30 . – P. 288–301.
[17] Zhikov V. V. About one addition to the classical theory of Favar // Mat. notes. - 1970. -7, № 2. - P. 239-246.
[18] Zhikov, V. V. Existence of almost periodic Levitan solutions of linear systems (2nd addition to the classical theory of Favar) // Mat.notes. - 1971. -9, № 4. - P. 409-414.
[19] Zhikov V. V. Proof of Favar's theorem on the existence of an almost-periodic solution in the case of arbitrary Banach space // Mat. notes. - 1978. - 23, № 1. - P. 121-126.
[20] Shubin M. A. Almost periodic functions and differential operators with partial derivatives // Uspekhi mat. nauk. - 1978. - 28, № 2. - P. 3-47.
[21] Fink A. M. Semi-separated conditions for almost periodic solutions // J. Diff. Equat. – 1972. – 11 . – P. 245–251.
[22] Slyusarchuk V. Y. Conditions for the existence of bounded solutions of nonlinear difference equations // Scientific Bulletin of Chernivtsi University, Mathematics. - 2009. - Issue 454. - P. 88-94.
[23] Slyusarchuk V. Y. Method of local linear approximation in the theory of bounded solutions of nonlinear difference equations // Nonlinear oscillations. - 2009. - 12, №. 3. - P. 368-378.
[24] Sliusarchuk V. Y. Exponentially dichotomous difference equations with non-Lipschitz perturbations // Nonlinear oscillations. - 2011. - 14, № 4. - P. 536-555.
[25] Slyusarchuk V. Y. Method of local linear approximation of nonlinear difference operators by weakly regular operators // Nonlinear oscillations. - 2012. - 15, № 1. - P. 122-126.
[26] Slyusarchuk V. Y. Nonlinear difference equations in the spaces of bounded bilateral sequences // Nonlinear fluctuations - 2012. - 15, № 4. - P. 528-538.
- ACS Style
- Slyusarchuk , V.Y. A study of almost periodic difference equations with continuous argument that does not use $\mathcal{H}$ -classes of these equations. Bukovinian Mathematical Journal. 2016, 1
- AMA Style
- Slyusarchuk VY. A study of almost periodic difference equations with continuous argument that does not use $\mathcal{H}$ -classes of these equations. Bukovinian Mathematical Journal. 2016; 1(3-4).
- Chicago/Turabian Style
- Vasyl Yukhimovych Slyusarchuk . 2016. "A study of almost periodic difference equations with continuous argument that does not use $\mathcal{H}$ -classes of these equations". Bukovinian Mathematical Journal. 1 no. 3-4.