Перейти до основного вмісту
Systems of reaction-convection-diffusion equations invariant under Galilei’s algebra
Serov Mykola Ivanovich 1 , Karpalyuk Tamara Oleksiivna 2 , Plyukhin Oleksiy Gennadiyovych 1
1 Department of Higher and Applied Mathematics, Poltava National Technical University named after Yuriy Kondratyuk , Poltava , 36011, Ukraine
2 Department of Mathematical Physics and Differential Equations, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, 01001, Ukraine
Keywords: Systems of reaction-convection-diffusion equations, Galilei’s algebra
Abstract
We distinguish the systems invariant with respect to Galilei’s algebra and its extensions by operators of scale and projective transformations, from the class of reaction-convection-diffusion systems of equations for two-dimensional vector field in the case of one spatial variable.
References

[1] Gleba A.V. Symmetric properties and exact solutions of nonlinear Galileo-invariant equations: Cand. of Phil: 01.01.03. - K., -2003. - 120 p.

[2] Zhadan T.O. Invariance of the system of equations of diffusion-convection with respect to generalized Galileo algebra // Bulletin of Taras Shevchenko National University of Kyiv. Taras Shevchenko National University of Kyiv, 2004, - 12, - P. 70-75.

[3] Lagno V.I., Spichak S.V., Stogniy V.I. Symmetric analysis of equations of evolutionary type. Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine: Mathematics and its applications. - K., 2002. - Vol. 45. - 359 p.

[4] Ovsyannikov L.V. Group analysis of differential equations // M.: Nauka, 1978. - 400 p.

[5] Omelyan O.M. Galilean invariance of the system of nonlinear equations of the diffusion reaction // Proceedings of the Institute of Physics and Mathematics of the National Academy of Sciences of Ukraine. Donetsk, 2009 - Vol. 1 - P. 138-147.

[6] Rassokha I.V. Investigation of symmetric properties of nonlinear systems of parabolic type: Candidate of Science (Physics and Mathematics): 01.01.02. - K., - 2012. - 189 p.

[7] Serov M.I., Zhadan T.O., Blazhko L.M. Classification of linear images of Galileo, Poincar´e and conformal algebras in the case of a two-dimensional vector field and their application // Ukrainian Mathematical Journal - 2006. - 58, № 8. - P. 1128-1145.

[8] Serov M.I., Karpalyuk T.O. Invariance of the system of equations of convection of diffusion with respect to generalized Galileo algebra in the case of a three-dimensional vector field // Mathematical Bulletin of the National Academy of Sciences - 2010 - Vol. 7 - P. 200-221.

[9] Serov M.I., Omelyan O.M. Classification of symmetric properties of the system of equations of chemotaxis // Ukrainian Mathematical Bulletin. - 2008. - Vol. 5, № 4. - P. 536-562.

[10] Serov M.I., Omelyan O.M. Symmetric properties and exact solutions of the system of equations of the Van der Waals fluid // Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine. - 2000. - Vol. 35. - P. 1-9.

[11] Serov M.I., Cherniga R.M. Lie symmetries and exact solutions of nonlinear equations with a convective term // Ukrainian Mathematical Journal - 1997. - 49, № 9. - P. 1262-1270.

[12] Akhatov I.S., Gazizov R.K., Ibragimov N.H. Nonlocal symmetries. Heuristic approach // J. Sov. Math. – 1991. – 55 . – P. 1401-1450.

[13] Cherniha R.M., King J.R. Lie symmetries of non-linear multidimensional reaction–diffusion systems: I // J. Phys. – 2000. – 33 . – P. 267-282.

[14] Cherniha R.M., King J.R. Lie symmetries of non-linear multidimensional reaction–diffusion systems: I. Addendum // J. Phys. – 2000. – 33 . – P. 7839-7841.

[15] Cherniha R.M., King J.R. Lie Symmetries of Nonlinear Multidimensional Reaction–Diffusion Systems: II // J. Phys. A: Math.Gen. – 2003. – 36 . – P. 405-425.

[16] Cherniha R.M., King J.R. Nonlinear Reaction– Diffusion Systems with Variable Diffusivities: Lie Symmetries, Ansätze and Exact Solutions // Math. Anal. Appl. – 2005. – 308 . – P. 11-35.

[17] Cherniha R.M., Serov M.I. Nonlinear Diffusion- Convection Systems: Lie and $Q$-conditional Symmetries // Proceedings of Institute of Mathematics of NAS of Ukraine. – 43 . – 2002. – P. 102-110.

[18] Cherniha R.M., Serov M.I. Nonlinear systems of the Byrgers-type equations: Lie and $Q$ -conditional symmetries, Ansätze and solutions // J. Math. Anal. Appl. – 2003. – 282. – P. 305-328.

[19] Cherniha R., Serov M., Rassokha I. Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations // J. Math. Anal. Appl. – 2008. – 342 . – P. 1363-1379.

[20] Dorodnitsyn V.A. On invariant solutions of non–linear heat conduction with a source // USSR Comput. Math. and Math. Phys. – 1982. – 22. – P. 115-122.

[21] Fushchych W., Shtelen W., Serov M. Symmetry analysis and exact solutions of equations of nonlinear mathematical physics // Dordrecht: Kluwer Academic Publishers. – 1993. – 436 p.

[22] Huai-Yu-Jian, Xiao-Ping Wang, Din-Yu Hsieh The Global Attractor of a Dissipative Nonlinear Evolution System // Journal of Mathematical Analysys and Application. – 1999. – 238 . – P. 124-142.

[23] Katkov V.L. The group classification of solutions of the Hopf equations // Zh. Prikl. Mekh. Tekhn. Fiz. – 1965. – 6 . – P. 105-106.

[24] Lie S. Über Integration durch bestimmente Integrale von einer Klasse lineare partiellen Differentialgleichungen 6. – Leipzig: 1881. – P. 328-368.

[25] Nikitin A.G., Wiltshire R.J. Symmetries of Systems of Nonlinear Reaction–Diffusion Equations in Symmetries in Nonlinear Mathematical Physics // Proc. of the Third Int. Conf. – Kiev, July 12-18. – 1999, Ed. A.M. Samoilenko (Inst. of Mathematics of Nat. Acad. Sci. of Ukraine). – P. 47-59.

[26] Nikitin A.G., Wiltshire R.J. System of reaction–diffusion equations and their symmetry properties // J. Math. Phys. – 2001. - 42 . – P. 1666-1688.

[27] Olver P. Applications of Lie groups to differential equations // Berlin: Springer. – 1986. – 513 p.

Cite
ACS Style
Serov, M.I.; Karpalyuk, T.O.; Plyukhin, O.G. Systems of reaction-convection-diffusion equations invariant under Galilei’s algebra. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Serov MI, Karpalyuk TO, Plyukhin OG. Systems of reaction-convection-diffusion equations invariant under Galilei’s algebra. Bukovinian Mathematical Journal. 2016; 1(1-2).
Chicago/Turabian Style
Mykola Ivanovich Serov, Tamara Oleksiivna Karpalyuk, Oleksiy Gennadiyovych Plyukhin. 2016. "Systems of reaction-convection-diffusion equations invariant under Galilei’s algebra". Bukovinian Mathematical Journal. 1 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings