Перейти до основного вмісту
Sidr's products and exhaustive spaces
Maslyuchenko Volodymyr Kyrylovych 1 , Myronyk Oksana Dmytrivna 1,2
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Professional College of Yuriy Fedkovych Chernivtsi National University, Chernivtsi , 58000, Ukraine
Keywords: Sidr's products, exhaustive spaces
Abstract

We introduce a new notion of a Ceder product $X ×_b Y$ for any topological spaces $X$ and $Y$  and a point $b ∈ Y.$ This notion generalizes the notion of the Ceder plane $\mathbb{M} = \mathbb{R} ×_0 [0,+∞).$ We prove that the Ceder product $X ×_b Y$ of stratifiable (in particular, metrizable) spaces $X$ and $Y$ is stratifiable if the set $\{b\}$  is closed in $Y$.

References

[1] Ceder J. Some generalizations of metric spaces // Pacif. J. Math. – 1961.– 11 . – P. 105-126.

[2] Borges C. On stratifiable spaces // Pacif. J. Math. – 1966.– 17 , N1. – P. 1-16.

[3] Engelking R. General Topology. - M.: Mir, 1986. - 752 p.

Cite
ACS Style
Maslyuchenko, V.K.; Myronyk, O.D. Sidr's products and exhaustive spaces. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Maslyuchenko VK, Myronyk OD. Sidr's products and exhaustive spaces. Bukovinian Mathematical Journal. 2016; 1(1-2).
Chicago/Turabian Style
Volodymyr Kyrylovych Maslyuchenko, Oksana Dmytrivna Myronyk. 2016. "Sidr's products and exhaustive spaces". Bukovinian Mathematical Journal. 1 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings