[1] Baran O.E., Dmytryshyn R.I. Some types of branched chain fractions corresponding to multiple power series // Theory of approximation of functions and its application. Proceedings of the IM NAS of Ukraine. - Kyiv, 2000. - Vol. 31. - P. 82-92.
[2] Bodnar D.I. Branching chain fractions. - K.:Nauk. dumka, 1986. - 176 p.
[3] Bodnar D.I. Corresponding branching chain fractions with linear partial numerators for double degree series // Ukr. mat. jurn. -1991. -43, № 4. - P. 474-482.
[4] Kuchminska Kh.Y. Dvuhvirnіkі nerevnіh frazy [Two-dimensional continuous fractions] - Lviv: IPPMM im. Pistrigach of the National Academy of Sciences of Ukraine, 2010. 218 p.
[5] Dmytryshyn R.I. The two-dimensional $g$-fraction with independent variables for double power series // J. Approx. Theory. – 2012. – 164 , № 12. – P. 1520-1539.
[6] Jones W.B., Thron W.J. Continued fractions: Analytic theory and applications. – Vol. 11.: Encycl. of Math. & its Appl. – London – Amsterdam – Don Mills – Ontario – Sydney – Tokyo: Addison-Wesley, 1980. – 429 p.
- ACS Style
- Dmytryshyn, R.I. Regular two-dimensional $C$-fraction with unequal variables for a double power series. Bukovinian Mathematical Journal. 2016, 1
- AMA Style
- Dmytryshyn RI. Regular two-dimensional $C$-fraction with unequal variables for a double power series. Bukovinian Mathematical Journal. 2016; 1(1-2).
- Chicago/Turabian Style
- Roman Ivanovych Dmytryshyn. 2016. "Regular two-dimensional $C$-fraction with unequal variables for a double power series". Bukovinian Mathematical Journal. 1 no. 1-2.