Перейти до основного вмісту
Multipoint problem for evolutionary equations with pseudo-Bessel operators of infinite order
Todoriko Tetyana Serhiivna 1
1 Department of Aplied Mathematics and Information Technologies, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: multipoint problem, pseudo-Bessel operators
Abstract
We prove the well solvability of a nonlocal multipoint, with respect to time, problem in the case where the boundary condition involves pseudo-Bessel operators constructed by different homogeneous and non-smooth at the origin characters, in the class of generalized functions of a distribution type.
References

[1] Ptashnyk B.Y., Ilkiv V.S., Kmit I.Y., Polishchuk V.M. Nonlocal Boundary Value Problems for Partial Differential Equations - Kyiv: Naukova Dumka, 2002. - 416 p.

[2] Matiychuk M.I. Parabolic singular boundary value problems. - K.: Institute of Mathematics of the National Academy of Sciences of Ukraine, 1999. - 176 p.

[3] Gorodetsky V.V., Drin Y.M. Dirichlet problem for one class of evolutionary equations // Scientific Bulletin of Chernivtsi University: Collection of scientific works. Issues 336-337. Mathematics - Chernivtsi: Ruta, 2007. - P. 61-78.

[4] Gorodetskyi V.V., Leniuk O.M. Evolutionary equations with pseudo-Bessel operators // Doklady NASU. 2007, - No. 8, - P. 11-15.

[5] Shevchuk N.M. Cauchy problem for evolution equations with pseudo-Bessel operators of infinite order // Scientific Bulletin of Chernivtsi University: Collection of scientific works. Issue 374. Mathematics - Chernivtsi: Ruta, 2008. - P. 145-154.

[6] Gorodetsky V.V., Mironik V.I. Two-point problem for one class of evolutionary equations.I // Differential Equations. - 2010. - Т. 46, № 3. - P. 349-363.

[7] Gorodetsky V.V., Mironik V.I. Two-point problem for one class of evolution equations. II // Differential Equations. - 2010. - Т. 46, № 4. - P. 520-526.

[8] Kulyk T.S., Myronyk V.I. Multipoint problem for one class of evolutionary pseudo-differential equations of parabolic type // Scientific Bulletin of Yuriy Fedkovych Chernivtsi National University. Series: mathematics: collection of scientific papers - Vol. 1, № 3. - Chernivtsi: Chernivtsi National University, 2011. - P. 49-57.

[9] Gorodetsky V.V., Lenyuk O.M. Fourier-Bessel transform of one class of infinitely differentiable functions // Boundary value problems for differential equations: Collection of scientific works - Chernivtsi: Prut, 2007, - Vol. 15, - P. 51-66.

[10] Leniuk O.M. Bessel transform of one class of generalized functions of the distribution type // Scientific Bulletin of Chernivtsi University: Collection of scientific works. Issues 336-337. Mathematics - Chernivtsi: Ruta, 2007. - P. 95-102.

Cite
ACS Style
Todoriko, T.S. Multipoint problem for evolutionary equations with pseudo-Bessel operators of infinite order. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Todoriko TS. Multipoint problem for evolutionary equations with pseudo-Bessel operators of infinite order. Bukovinian Mathematical Journal. 2016; 1(1-2).
Chicago/Turabian Style
Tetyana Serhiivna Todoriko. 2016. "Multipoint problem for evolutionary equations with pseudo-Bessel operators of infinite order". Bukovinian Mathematical Journal. 1 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings