Перейти до основного вмісту
Generalized boundary values ​​of Fourier transforms of the convolution algebra of Schwarz distributions with supports in a cone
Solomko Andriy Vasyliovych 1 , Sharyn Serhiy Volodymyrovych 1
1 Department of Mathematical and Functional Analysis, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76018, Ukraine
Keywords: boundary values ​​of Fourier transforms, the convolution algebra, the Paley-Wiener theorem, Hardy-Lebesgue’s class
Abstract
We prove an analogue of the Paley-Wiener theorem for Hardy-Lebesgue’s class on the representation of the Fourier-image of a convolution algebra of distributions on a cone in the form of a multiplicative algebra of analytic functions of complex variable.
References

[1] Lopushansky O.V., Solomko A.V., Sharyn S.V. Vector-valued functional calculus for a convolution algebra of distributions on cone // Matematychni Studii. - 2011. - 35 , N1. - P. 78-90.

[2] Solomko A.V. Operator image of the Fourier image of the convolutional algebra of distributions on a cone // Bulletin of Lviv University. Series of meh.-mat. - 2005. - Issue 64. - P. 266-272.

[3] Lopushansky O.V., Solomko A.V., Sharin S.V. On the topological isomorphism of the algebra of distributions with carriers in the cone of the commutant of the semigroup of shifts  // Mathematical methods and physical and mechanical fields. - 2004. - 47 , N2. - P. 95-99.

[4] Solomko A.V. A special case of the operator calculus for generalized functions with carriers on a cone // Carpathian mathematical publications. - 2009. - 1 , N1. - P. 92-99.

[5] Komatsu H. An introduction to the theory of generalized functions // Tokyo University Publ. - 2000.

[6] Vladimirov V.S. Generalized functions in mathematical physics.  M.: Nauka, 1979.  318 p.

[7] Schaefer H. Topological vector spaces.  M.: Mir, 1971.  360 p.

[8] Seeley R.T. Extensions of $C^∞$ -functions defined in a half-space // Proc. Amer. Math. Soc. - 1964. - 15 . - P. 625-626.

[9] Yoshida K. Functional analysis.  M.:Mir, 1967. - 624 p.

Cite
ACS Style
Solomko, A.V.; Sharyn, S.V. Generalized boundary values ​​of Fourier transforms of the convolution algebra of Schwarz distributions with supports in a cone. Bukovinian Mathematical Journal. 2016, 1
AMA Style
Solomko AV, Sharyn SV. Generalized boundary values ​​of Fourier transforms of the convolution algebra of Schwarz distributions with supports in a cone. Bukovinian Mathematical Journal. 2016; 1(1-2).
Chicago/Turabian Style
Andriy Vasyliovych Solomko, Serhiy Volodymyrovych Sharyn. 2016. "Generalized boundary values ​​of Fourier transforms of the convolution algebra of Schwarz distributions with supports in a cone". Bukovinian Mathematical Journal. 1 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings