[1] Billingsley P. Convergence of probability measures. - M. : Nauka, 1977. - 361 p.
[2] Bulinskiy A.V., Shiryaev A.N. Theory of random processes. - M. : Fizmatgiz, 2005. - 408 p.
[3] Gikhman I.I., Skorokhod A.V. Stochastic differential equations and their applications. - K. : Naukova Dumka, 1982. - 612 p.
[4] Dynkin E.B. Markov processes. - M. : Fizmatgiz, 1969. - 859 p.
[5] Dub J. Probabilistic processes. - M. : Fizmatgiz, 1963. - 605 p.
[6] Jalladova I.A. Optimization of stochastic systems. - K.: KNEU, 2005. - 284 p.
[7] Kats I.Ya. Method of Lyapunov functions in problems of stability and stabilization of systems of random structure. - Ekaterinburg : UGAPS, 1998. - 222 p.
[8] Kolmanovskiy V.B., Nosov V.R. Stability and periodic modes of regulated systems with aftereffects. - M. : Nauka, 1984. - 448 p.
[9] Korenevskiy D.G. Stability of dynamic systems at random perturbations of parameters. Algebraic criteria. - K. : Naukova Dumka, 1989. - 208 p.
[10] Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. -M. : Nauka, 1989. - 623 p.
[11] Lukashiv T.O., Yurchenko I.V., Yasinsky V.K. Method of Lyapunov functions of stability research of stochastic systems of Itosluchaya structure with impulse Markov switching. I. General theorems on stability of impulse stochastic systems // Cybernetics and System Analysis. -2009. - № 2. - P. 135-145.
[12] Lukashiv T.O., Yurchenko I.V., Yasinsky V.K. Method of Lyapunov functions of stability research of stochastic systems of Itosluchaya structure with impulse Markov switching. II. Stability of the first approximation of impulsive stochastic systems with Markov parameters // Cybernetics and System Analysis. - 2009. - № 3. - P. 146-158.
[13] Milmar V.D., Myshkis A.D. About stability of motion in the presence of shocks // Sib.mat. zhurn. - 1960. - Vol. 1, № 2. - p. 233-237.
[14] Sverdan M.L., Tsarkov E.F. Stability of stochastic impulse systems. - Riga :RTU, 1994. - 300 p.
[15] Skorokhod A. V. Asymptotic methods of the theory of stochastic differential equations. - K. : Naukova Dumka, 1987. - 328 p.
[16] Khasminsky R.Z. Stability of systems of differential equations at random perturbations of their parameters. - M. : Nauka, 1969. - 368 p.
[17] Tsarkov E.F. Random perturbations of differential-functional equations. - Riga : Zinatne, 1989. - 421 p.
[18] Yasinsky V.K., Yasinsky E.V. Problems of stability and stabilization of dynamic systems with finite consequences. - Kyiv: TViMS, 2005. - 578 p.
[19] Yasinsky V.K., Yasinsky E.V., Yurchenko I.V. Stabilization in dynamic systems of random structure - Chernivtsi: Zoloti Litavry, 2011. - 738 p.
[20] Yasinskaya L.I., Yasinsky V.K. Stability of stochastic differential equations with variable delay in the presence of Poisson perturbations // Stochastic systems and their applications. - K. : Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, 1990. - P. 108-120.
- ACS Style
- Lukashiv, T.O.; Yasinsky, V.K. Asymptotic stochastic stability in general of strong solutions of stochastic Ito-Skorokhod differential equations of random structure. Bukovinian Mathematical Journal. 2016, 1
- AMA Style
- Lukashiv TO, Yasinsky VK. Asymptotic stochastic stability in general of strong solutions of stochastic Ito-Skorokhod differential equations of random structure. Bukovinian Mathematical Journal. 2016; 1(1-2).
- Chicago/Turabian Style
- Taras Olegovich Lukashiv, Volodymyr Kyrylovych Yasinsky. 2016. "Asymptotic stochastic stability in general of strong solutions of stochastic Ito-Skorokhod differential equations of random structure". Bukovinian Mathematical Journal. 1 no. 1-2.