Перейти до основного вмісту
On (M, N)-polynomial functions on products and differentiable polynomial functions on crosses
Kosovan Vasyl Mykhailovych 1 , Maslyuchenko Volodymyr Kyrylovych 2
1 Department of Mathematical Modeling, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: polynomial functions
Abstract

In the given paper we find the general form of (m, n)-polynomial functions defined on products X х Y , where X and Y are subsets of any field K . We also prove that if every separately polynomial function f:X×Y→K" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgba(0, 0, 0, 0.87); font-family: "Noto Sans", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;"> is jointly polynomial, then for finite or uncountable field K this is still valid for functions f:E→K" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgba(0, 0, 0, 0.87); font-family: "Noto Sans", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;"> defined on the cross E=(X×K)∪(K×Y)" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: 400; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: 0px; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; color: rgba(0, 0, 0, 0.87); font-family: "Noto Sans", -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; position: relative;"> of X х Y , but for countable field K it is not true.

Cite
ACS Style
Kosovan, V.M.; Maslyuchenko, V.K. On (M, N)-polynomial functions on products and differentiable polynomial functions on crosses. Bukovinian Mathematical Journal. 2018, 2
AMA Style
Kosovan VM, Maslyuchenko VK. On (M, N)-polynomial functions on products and differentiable polynomial functions on crosses. Bukovinian Mathematical Journal. 2018; 2(2-3).
Chicago/Turabian Style
Vasyl Mykhailovych Kosovan, Volodymyr Kyrylovych Maslyuchenko. 2018. "On (M, N)-polynomial functions on products and differentiable polynomial functions on crosses". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings