Перейти до основного вмісту
Asymptotic methods in inverse problems of hydromechanics
Nesteruk Ihor Heorhiyovych 1 , Shepetyuk Bohdan Dmytrovych 2
1 (Department of Flows with Free Boundaries), Institute of Hydromechanics of the National Academy of Sciences of Ukraine, Kyiv, 03680, Ukraine
2 Department of Aplied Mathematics and Information Technologies, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Asymptotic methods, hydromechanics
Abstract

Inverse unsteady problems of high-speed hydromechanics were investigated with the use of integral-differential equation. Its solution was expressed as an asymptotic series and allowed obtaining analytic formulas for the first and second approximations both for the shape of slender axisymmetric cavities in ponderable and unponderable liquids for sub- and supersonic flows and for axisymmetric body shapes with the prescribed pressure distribution over the surface. Parameters limitations for the steady and the unsteady cavity flows were investigated with the use of stability principle for the mathematical physics problems. In the case of the partial cavitation on the conicalcylindrical bodies some physical effects were revealed; a classification of the possible axisymmetric cavity shapes was done. The gas ventilation influence on the slender axisymmetric steady cavities was investigated.

Cite
ACS Style
Nesteruk, I.H.; Shepetyuk, B.D. Asymptotic methods in inverse problems of hydromechanics. Bukovinian Mathematical Journal. 2018, 2
AMA Style
Nesteruk IH, Shepetyuk BD. Asymptotic methods in inverse problems of hydromechanics. Bukovinian Mathematical Journal. 2018; 2(2-3).
Chicago/Turabian Style
Ihor Heorhiyovych Nesteruk, Bohdan Dmytrovych Shepetyuk. 2018. "Asymptotic methods in inverse problems of hydromechanics". Bukovinian Mathematical Journal. 2 no. 2-3.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings