[1] K. Borsuk. Theory of retracts. - M.: Mir. - 1971. - 292 p.
[2] Karlova O.. The first functional Lebesgue class and the Bier classification of separately continuous mappings // Chernivtsi Univ. Mathematics. - Issues 191-192. - 2004. - P. 52-60.
[3] V. Mykhailyuk. Topology of sliced continuity and one generalization of Sierpinski's theorem // Mat. Studii. - 14, № 2. - 2000. - P. 193-196.
[4] V.V. Mikhailiuk, O.V. Sobchuk. Functions with a diagonal of a finite Beer class // Mat. Studii. - 14, № 1. - 2000. - P. 23-28.
[5] V.V. Mikhailiuk, O.V. Sobchuk. Bera classification of separately continuous functions and dependence on a countable number of coordinates // Chernivtsi Univ. Mathematics. - Issues 191-192. - 2004. - P. 116-118.
[6] Р. Engelking. General topology. - M.: Mir.- 1986. - 790 p.
[7] R. Ваіге. Sur les functions des variables reélles / / Ann. Mat. Pura Appl., ser. 3. - 3 . - 1899. - P. 1-123.
[8] J.E. Hart, K. Kunen. On the regularity of the topology of separate continuity / / Top. Appl. - 123 . - 2002. - P. 103-123.
[9] J. Lukeš, J. Malý, L. Zaji̇́ček. Frne Topology Methods іn Real Analysis and Potenrial Theory. - Springer-Verlag. - 1986. - 480 p.
[10] Z. Piotrowski, R. Valhn, E. Wrngler. On the separately open topology. - Tatra Mt. Math. Publ. - 42 . - 2009. - P. 39-49.
- ACS Style
- Karlova, O.; Mykhaylyuk, V.; Sobchuk, O.V. On the continuation of distinctly continuous functions. Bukovinian Mathematical Journal. 2018, 2
- AMA Style
- Karlova O, Mykhaylyuk V, Sobchuk OV. On the continuation of distinctly continuous functions. Bukovinian Mathematical Journal. 2018; 2(1).
- Chicago/Turabian Style
- Olena Karlova, Volodymyr Mykhaylyuk, Oleksandr Vasyliovych Sobchuk. 2018. "On the continuation of distinctly continuous functions". Bukovinian Mathematical Journal. 2 no. 1.