Перейти до основного вмісту
On the continuation of distinctly continuous functions
Karlova Olena 1,2 , Mykhaylyuk Volodymyr 1,2 , Sobchuk Oleksandr Vasyliovych 3
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Jan Kokhanowski University, Kielce, 25-001, Poland
3 Professional College of Yuriy Fedkovych Chernivtsi National University, Chernivtsi , 58000, Ukraine
Keywords: a separately continuous function, functionally closed subsets, the Euclidian plane
Abstract
We investigate the extendibillity of a separately continuous function from a subset of a product of topologival spaces. We obtain also several properties of functionally closed subsets of the Euclidian plane equipped with the cross-topology.
References

[1]  K.  Borsuk.  Theory of retracts.  - M.: Mir.  - 1971.  - 292 p.

[2] Karlova O.. The first functional Lebesgue class and the Bier classification of separately continuous mappings // Chernivtsi Univ. Mathematics. - Issues 191-192. - 2004. - P. 52-60.

[3] V. Mykhailyuk. Topology of sliced continuity and one generalization of Sierpinski's theorem // Mat. Studii. - 14, № 2. - 2000. - P. 193-196.

[4] V.V. Mikhailiuk, O.V. Sobchuk. Functions with a diagonal of a finite Beer class  // Mat. Studii. - 14, № 1. - 2000. - P. 23-28.

[5] V.V. Mikhailiuk, O.V. Sobchuk. Bera classification of separately continuous functions and dependence on a countable number of coordinates  // Chernivtsi Univ. Mathematics. - Issues 191-192. - 2004. - P. 116-118.

[6]  Р.  Engelking.  General topology.  - M.: Mir.- 1986.  - 790 p.

[7] R. Ваіге. Sur les functions des variables reélles / / Ann. Mat. Pura Appl., ser. 3. - 3 . - 1899. - P. 1-123.

[8] J.E. Hart, K. Kunen. On the regularity of the topology of separate continuity / / Top. Appl. - 123 . - 2002. - P. 103-123.

[9] J. Lukeš, J. Malý, L. Zaji̇́ček. Frne Topology Methods іn Real Analysis and Potenrial Theory. - Springer-Verlag. - 1986. - 480 p.

[10] Z. Piotrowski, R. Valhn, E. Wrngler. On the separately open topology. - Tatra Mt. Math. Publ. - 42 . - 2009. - P. 39-49.

Cite
ACS Style
Karlova, O.; Mykhaylyuk, V.; Sobchuk, O.V. On the continuation of distinctly continuous functions. Bukovinian Mathematical Journal. 2018, 2
AMA Style
Karlova O, Mykhaylyuk V, Sobchuk OV. On the continuation of distinctly continuous functions. Bukovinian Mathematical Journal. 2018; 2(1).
Chicago/Turabian Style
Olena Karlova, Volodymyr Mykhaylyuk, Oleksandr Vasyliovych Sobchuk. 2018. "On the continuation of distinctly continuous functions". Bukovinian Mathematical Journal. 2 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings