[1] Cannon J. Determination of the coefficient of $u_x$ in a linear parabolic equation / J. Cannon, S. Perez-Esteva / / Inverse Problems. - 1994. - 10 , N. 3. - P. 521-531.
[2] Hong-Ming Yin. Global solvability for some parabolic inverse problems / Yin Hong-Ming / / J. Math. Anal. Appl. - 1991. - P. 392-403.
[3] Trong D.D. Coefficient identification for a parabolic equation / D.D. Trong, D.D. Ang // Inverse Problems. - 1994. - 10 , N. 3. - P. 733-752.
[4] Ivanchov M.I. Unambiguous determination of two coefficients in a parabolic equation in the case of nonlocal and integral conditions / M.I. Ivanchov, N.V. Pabyrivska // Ukr. math. zhurnal - 2001. - 53, № 5 - P. 589-596.
[5] Pabyrivska N.V. Thermal moments in inverse problems for parabolic equations / N.V. Pabyrivska // Lviv Univ. Ser. meh.-mat. - 2000. - Issue 56. - P. 142-149.
[6] Baranska I. Determination of the senior coefficient in a parabolic equation in a region with unknown boundaries / I. Baranska // Lviv Univ. Ser. meh.-mat. - 2005. - Issue 64. - P. 20-38.
[7] Ivanchov M.I. Inverse problem with a free boundary for the equation of heat conduction / M.I. Ivanchov // Ukr. math. zhurnal - 2003. - 55 , № 7. - P. 901-910.
[8] Snitko G.A. Inverse problem for the parabolic equation in the domain with a free boundary / G.A. Snitko // Mat. methods and physicomechanical fields. - 2007. - 50 , № 4. - P. 7-18.
[9] Snitko G.A. The inverse problem of determining the junior coefficient in a parabolic equation in a region with a free boundary / G.A. Snitko // Bulletin of the National University “Lviv Polytechnic”. “Physical and mathematical sciences”. - 2009. - Issue 643, № 643. - P. 45-52.
[10] Ladyzhenskaya, O.A. Linear and quasilinear equations of parabolic type / O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva/ / M.: Nauka, 1967. - 736 p.
[11] Ivanchov M. Inverse problems for equations of parabolic type / / Lviv: VNTL Publ., 2003. - 238 p. - (Math. Studies: Monograph Ser. - Vol. 10.)
[12] Snitko G.A. Coefficient inverse problem for a parabolic equation in a domain with a free boundary / G.A. Snitko // Mat. methody i fiziko-mekh. polya. - 2008. - 51 , № 4. - P. 37-47.
- ACS Style
- Snitko , H.A. Identification of the lowest coefficient of a parabolic equation in a domain with a free boundary. Bukovinian Mathematical Journal. 2018, 2
- AMA Style
- Snitko HA. Identification of the lowest coefficient of a parabolic equation in a domain with a free boundary. Bukovinian Mathematical Journal. 2018; 2(1).
- Chicago/Turabian Style
- Halyna Anatoliivna Snitko . 2018. "Identification of the lowest coefficient of a parabolic equation in a domain with a free boundary". Bukovinian Mathematical Journal. 2 no. 1.